Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, December 8, 2011

Surprises Drive Learning In Same Neural Circuits

Fascinating idea, especially since surprises occur constantly when trying to recover from a stroke.
Gee, my muscles didn't move that arm, what a surprise? If true then my surprise would only last the first week or so, after that I would know that it didn't work.
http://www.medicalnewstoday.com/releases/238785.php
Primates learn from feedback that surprises them, and in a recent investigation of how that happens, neurosurgeons have learned something new. The insight they gleaned from examining the response of specific brain tissues during a learning task may inform future rehabilitative therapies after stroke or traumatic brain injury.

"It's been known for a long time that it's unexpected events in particular that drive learning," said Wael Asaad, assistant professor of neurosurgery in the Warren Alpert Medical School of Brown University, and the lead author of the study published Dec. 6, 2011 in the Journal of Neuroscience. "It's when you encounter something that's unexpectedly good or bad that you need to change your behavior either to keep doing the thing that's good or avoid the thing that's bad. There's been a lot of debate over how these signals are represented [in the brain]."

Specifically, Asaad said the literature of the field has been contentious about if and how neurons in the lateral prefrontal cortex and its neighboring subcortical structures, such as the caudate nucleus, process the unexpected rewards and disappointments of trial-and-error learning.

Neurosurgeons such as Asaad, who joined Brown and Rhode Island Hospital last spring, and senior author Emad Eskandar of Massachusetts General Hospital, where they did the work, want to know these details because they may hold the key to accelerate re-learning in patients who've suffered brain damage. Rebuilding neural infrastructure would only be the first step.

"How do you restore the information that's been lost, the things that you learned?" Asaad said. "What we're interested in is whether you can augment these mechanisms of re-learning. If somebody is trying to make a certain movement and they occasionally are able to approximate a correct movement, if you could boost the reward signals at the right time, could you help them learn that particular movement more quickly?"

Surprised by similarities

Some scientists have posited that separate anatomical structures, or at least distinct circuits, process positive or negative feedback to direct future behavior, but there has been little proof, at least at the level of individual neurons. Asaad said he expected to find some of those hypothesized processing differences between the lateral prefrontal cortex and the subcortical caudate nucleus, which govern high-level planning, by probing hundreds of individual neurons in each structure in two macaque monkeys while they worked on trial-and-error learning tasks. Monkeys received juice for guessing right or none for being wrong.

Instead, he and Eskandar found the neurons in both structures acted very similarly for both positive and for negative feedback.

No comments:

Post a Comment