Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, November 23, 2012

Back seat driving: hindlimb corticospinal neurons assume forelimb control following ischaemic stroke.

Who is going to take this and determine applicability to humans and then create a therapy protocol?
Don't just tell me it occurs, tell me exactly how to make it occur. Otherwise I'll know you are lazy and wish to leave the hard work to us stroke-addled patients.

http://feedproxy.google.com/~r/nih/bxxu/~3/Q_ujIq_Y6A4/display.cgi
Whereas large injuries to the brain lead to considerable irreversible functional impairments, smaller strokes or traumatic lesions are often associated with good recovery. This recovery occurs spontaneously, and there is ample evidence from preclinical studies to suggest that adjacent undamaged areas (also known as peri-infarct regions) of the cortex 'take over' control of the disrupted functions. In rodents, sprouting of axons and dendrites has been observed in this region following stroke, while reduced inhibition from horizontal or callosal connections, or plastic changes in subcortical connections, could also occur. The exact mechanisms underlying functional recovery after small- to medium-sized strokes remain undetermined but are of utmost importance for understanding the human situation and for designing effective treatments and rehabilitation strategies. In the present study, we selectively destroyed large parts of the forelimb motor and premotor cortex of adult rats with an ischaemic injury. A behavioural test requiring highly skilled, cortically controlled forelimb movements showed that some animals recovered well from this lesion whereas others did not. To investigate the reasons behind these differences, we used anterograde and retrograde tracing techniques and intracortical microstimulation. Retrograde tracing from the cervical spinal cord showed a correlation between the number of cervically projecting corticospinal neurons present in the hindlimb sensory-motor cortex and good behavioural recovery. Anterograde tracing from the hindlimb sensory-motor cortex also showed a positive correlation between the degree of functional recovery and the sprouting of neurons from this region into the cervical spinal cord. Finally, intracortical microstimulation confirmed the positive correlation between rewiring of the hindlimb sensory-motor cortex and the degree of forelimb motor recovery. In conclusion, these experiments suggest that following stroke to the forelimb motor cortex, cells in the hindlimb sensory-motor area reorganize and become functionally connected to the cervical spinal cord. These new connections, probably in collaboration with surviving forelimb neurons and more complex indirect connections via the brainstem, play an important role for the recovery of cortically controlled behaviours like skilled forelimb reaching.

No comments:

Post a Comment