Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, November 20, 2012

Delayed leptin administration after stroke induces neurogenesis and angiogenesis

Neurogenesis and angiogenesis are sorely needed after a stroke so get those clinical trials going.
http://onlinelibrary.wiley.com/doi/10.1002/jnr.23147/abstract;jsessionid=C09C894321FDCAD70366819EABFC4CEA.d01t02?deniedAccessCustomisedMessage=&userIsAuthenticated=false

Abstract

Leptin is a potent AMP kinase (AMPK) inhibitor that induces neuroprotection, neurogenesis, and angiogenesis when administered immediately after stroke. To dissociate these effects, we explored the effects of delayed administration of leptin, at 10 days after stroke onset, on neurogenesis and angiogenesis after stroke. Sabra mice underwent photothrombotic stroke and were treated with vehicle or leptin given either as a single dose or in triple dosing, 10 days later. Newborn cells were labeled with bromodeoxyuridine. Functional outcome was studied with the neurological severity score for 90 days poststroke, and the brains were then evaluated via immunohistochemistry. Final infarct volumes did not differ between the groups. Exogenous leptin led to significant increments in the number of proliferating BrdU+ cells in the subventricular zone and in the cortex abutting the lesion (2.5-fold and 1.4-fold, respectively). There were significant increments in the number of newborn neurons and glia (4- and 3.4-fold, respectively) in leptin-treated animals. Leptin also significantly increased the number of blood vessels in the perilesioned cortex. However, animals treated with leptin failed to demonstrate significantly better functional states. In conclusion, leptin induces neurogenesis and angiogenesis even when given late after stroke but does not lead to better functional outcome in this delayed-treatment paradigm. These results suggest that the main beneficial effects of leptin after stroke are associated with its early neuroprotective role rather than with its proneurogenic or proangiogenic effects.

No comments:

Post a Comment