Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, May 14, 2015

TSRI scientists map out protein structure involved in cellular function, nervous system development

How much of this protein structure is needed because we are now redeveloping our nervous system? Does your doctor have ANY clue about this need?
http://www.news-medical.net/news/20150512/TSRI-scientists-map-out-protein-structure-involved-in-cellular-function-nervous-system-development.aspx
Scientists from The Scripps Research Institute (TSRI), working closely with researchers at the National Institutes of Health (NIH), have mapped out the structure of an important protein involved in cellular function and nervous system development.
The new structure provides crucial information for understanding how the protein binds to cellular components. It's also the first structure determined of any ligase in the tubulin tyrosine ligase-like (TTLL) family.
Scientists have been especially curious about the role of TTLLs because mutations in these proteins have been linked to a range of neurodegenerative diseases, including retinal dystrophy and the rare Joubert syndrome.
"This protein is highly expressed in the nervous system and has an integral role in neuronal development," said Elizabeth Wilson-Kubalek, senior staff scientist in Professor Ron Milligan's laboratory at TSRI and co-first author of the new paper with Christopher Garnham and Annapurna Vemu of the NIH's National Institute of Neurological Disorders and Stroke (NINDS).
The new research was published online ahead of print by the journal Cell.
More at link.

No comments:

Post a Comment