Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, June 14, 2016

Systems Biology of Immunomodulation for Post-stroke Neuroplasticity: Multimodal Implications of Pharmacotherapy and Neurorehabilitation

It would seem that this should have been broken into multiple trials. Putting anti-inflammation drugs, tDCS, and rTMS into the same trial  is a recipe for not knowing which intervention did what.  A good mentor would have known that and changed the trial appropriately.
http://journal.frontiersin.org/article/10.3389/fneur.2016.00094/abstract
  • 1National Brain Research Centre, India
AIMS: Recent studies indicate that anti-inflammatory drugs, act as a double-edged sword, not only exacerbating secondary brain injury but also contributing to neurological recovery after stroke. Our aim is to explore whether there is a beneficial role for neuroprotection and functional recovery using antiinflammatory drug along with neurorehabilitation therapy using transcranial direct current stimulation (tDCS) and repetitive transcranial magnetic stimulation (rTMS), so as to improve functional recovery after ischemic stroke.
METHODS: We develop a computational systems biology approach from preclinical data using ordinary differential equations, to study the behavior of both phenotypes of microglia such as M1 type (pro-inflammatory) vis-à-vis M2 type (anti-inflammatory) under anti-inflammatory drug action (minocycline). We explore whether pharmacological treatment along with cerebral stimulation using tDCS and rTMS is beneficial or not. We utilize the systems pathway analysis of minocycline in NF-κB (nuclear factor kappa beta) signaling and neurorehabilitation therapy using tDCS and rTMS which act through brain-derived neurotrophic factor (BDNF) and tropomyosin-related kinase B (TrkB) signaling pathways.
RESULTS: We demarcate the role of neuroinflammation and immunomodulation in post-stroke recovery, under minocycline activated microglia and neuroprotection together with improved neurogenesis, synaptogenesis and functional recovery under the action of rTMS or tDCS. We elucidate the feasibility of utilizing rTMS/tDCS to increase neuroprotection across the reperfusion stage during minocycline administration. We delineate that the signaling pathways of minocycline by modulation of inflammatory genes in NF-κB and proteins activated by tDCS and rTMS through BDNF, Trk-B and Calmodulin kinase (CaMK) signaling. Utilizing systems biology approach, we show the activation pathways for pharmacotherapy (minocycline) and neurorehabilitation (rTMS applied to ipsilesional cortex and tDCS) results into increased neuronal and synaptic activity that commonly occur through activation of N-methyl-D-aspartate (NMDA) receptors. We construe that considerable additive neuroprotection effect would be obtained and delayed reperfusion injury can be remedied, if one uses multimodal intervention of minocycline together with tDCS and rTMS.
CONCLUSION: Additive beneficial effect is thus noticed for pharmacotherapy along with neurorehabilitation therapy, by maneuvering the dynamics of immunomodulation using anti-inflammatory drug and cerebral stimulation for augmenting the functional recovery after stroke, which may engender clinical applicability for enhancing plasticity, rehabilitation and neurorestoration.
Keywords: Stroke, Neuroprotection, Rehabilitation, Minocycline, direct current stimulation, Transcranial magnetic stimulation.
Citation: Alam MA, Rallabandi VS and Roy PK (2016). Systems Biology of Immunomodulation for Post-stroke Neuroplasticity: Multimodal Implications of Pharmacotherapy and Neurorehabilitation. Front. Neurol. 7:94. doi: 10.3389/fneur.2016.00094
Received: 22 Jan 2016; Accepted: 07 Jun 2016.
Edited by:
Anirban Dutta, Leibniz-Institut für Arbeitsforschung an der TU Dortmund, Germany
Reviewed by:
Raju S. Bapi, University of Hyderabad, India
Mamta Naidu, GRI/ CCSB-Tufts Sch Med, USA  
Copyright: © 2016 Alam, Rallabandi and Roy. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) or licensor are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
* Correspondence: Prof. Prasun K. Roy, National Brain Research Centre, NH-8, Nainwal Road, Manesar, Grgaon, 122051, Haryana, India, pkroy@nbrc.ac.in

No comments:

Post a Comment