Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, February 14, 2025

Low-speed uphill exercise increases lactate and brain-derived neurotrophic factor in brain regions for memory and learning

 You want BDNF, so ask your competent? doctor for EXACT PROTOCOLS DELIVERING THAT! Oh, your doctor doesn't have them? RUN AWAY!

  • BDNF (179 posts to April 2011)
  • Low-speed uphill exercise increases lactate and brain-derived neurotrophic factor in brain regions for memory and learning

    https://doi.org/10.1016/j.neures.2025.02.004
    Get rights and content
    Under a Creative Commons license
    open access

    Highlights

    • Acute low-speed uphill exercise enhances lactate and BDNF in the brain
    • The acute elevation of blood lactate levels is coincided with that of brain
    • The effect of uphill exercise on brain lactate and BDNF is a time dependent manner

    Abstract

    We investigated the acute effects of low-speed uphill exercise on lactate levels and brain-derived neurotrophic factor (BDNF) expression in the cortex and hippocampus. Male Sprague Dawley rats were divided into control, flat exercise (flat-EX), and uphill exercise (uphill-EX). EX groups were subjected to treadmill EX at a low speed of 13 m/min for 30 min or 90 min on 0% (flat-EX) or 40% (uphill-EX) grades. Lactate levels in the blood and brain increased in the uphill-EX but not in the flat-EX. Despite the slow speed, uphill-EX decreased muscle glycogen, with a predominance of fast-twitch fibers; however, brain glycogen remained unchanged in both EX-groups. Sodium lactate was administered via external jugular catheterization to determine whether the uphill EX-induced brain lactate increase was derived from blood. Changes in blood lactate levels coincided with those in the brain, indicating that an elevation in blood lactate may lead to increased brain lactate levels. Furthermore, although a longer uphill exercise of 90 min increased BDNF protein levels in the cortex and hippocampus, the flat-EX did not cause a change. These results suggest that prolonged low-speed uphill exercise, which recruits fast-twitch muscles, acutely increases lactate and BDNF in the brain regions for memory and learning.

    No comments:

    Post a Comment