Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, January 4, 2026

Long-range axon branching: contributions to brain network plasticity and repair

 If your competent? doctor doesn't have any EXACT PROTOCOLS on this you have a completely fucking incompetent doctor! RUN AWAY!

Let's check how long your doctor, hospital and board of directors have been incompetent! Well over a decade! WOW, ARE YOU TRYING FOR A RECORD?

Long-range axon branching: contributions to brain network plasticity and repair


Abstract

Brain function requires exquisitely adapted plasticity at multiple scales, from synapses to whole-brain networks. Evidence for large-scale plasticity in functional brain networks comes from neuroimaging data across a variety of species, particularly during development and following injury. However, how large-scale network remodelling is achieved at the microscopic level is unknown as the growth of entirely new long-distance axons is unlikely to occur. Recent insights from electron microscopic connectome studies and single-cell projectomes of neurons in the brains of multiple model organisms have provided new evidence for the incredible structural complexity of axons and their branches that traverse the brain. This evidence shows highly arborized axonal projections, differentially myelinated branches of the same axon, and axonal regions devoid of synaptic contacts but with the potential to form synaptic connections in new or additional areas. Recent electron microscopic data suggest that these axonal features may be evolutionarily conserved. Here we consider whether these features could enable long-range and large-scale neuroplastic changes at a functional level, particularly following focal brain injury. These insights contribute to our emerging understanding of how the brain undergoes large-scale reorganization to adapt to changing circumstances.

This is a preview of subscription content, access via your institution

No comments:

Post a Comment