Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, December 4, 2011

CXC chemokine receptor 4 regulates neuronal migration and axonal pathfinding in the developing nervous system: implications for neuronal regeneration

more neuron pathfinding. Get your researcher involved.
http://jme.endocrinology-journals.org/content/38/3/377.short

Abstract

Chemotactic cytokines (chemokines) are small secreted proteins that control leukocyte trafficking in immune organs. Chemokines which are induced in the brain during conditions of inflammation play a role in the local immune response. Recently, it has been established in the rodent brain that distinct chemokines and chemokine receptors are constitutively expressed by neurons and that these chemokines modulate neuronal functions. The CXC motif chemokine stromal cell-derived factor-1 (SDF-1), CXCL12 together with its cognate receptor CXCR4 represents the best-characterized neuronal chemokine system. Transwell migration assays with neuronal precursors, pharmacological manipulation of CXCR4 signaling in embryonic brain explants, and histochemical studies of SDF-1- or CXCR4-deficient mouse embryos provide proof that SDF-1 directs neuronal migration and axonal pathfinding in the developing nervous system. In the adult brain, SDF-1 is thought to influence neurogenesis as well as recruitment of brain resident and non-resident circulating cells toward sites of lesion. The present review summarizes patterns and functions of the SDF-1/CXCR4 system in the rodent brain with a focus on the developing and adult cerebral cortex.

No comments:

Post a Comment