Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, December 4, 2011

LIM Factor Lhx3 Contributes to the Specification of Motor Neuron and Interneuron Identity through Cell-Type-Specific Protein-Protein Interactions

I'm sure someone could put this into high school English.
http://www.sciencedirect.com/science/article/pii/S0092867402008231

Abstract

LIM homeodomain codes regulate the development of many cell types, though it is poorly understood how these factors control gene expression in a cell-specific manner. Lhx3 is involved in the generation of two adjacent, but distinct, cell types for locomotion, motor neurons and V2 interneurons. Using in vivo function and protein interaction assays, we found that Lhx3 binds directly to the LIM cofactor NLI to trigger V2 interneuron differentiation. In motor neurons, however, Isl1 is available to compete for binding to NLI, displacing Lhx3 to a high-affinity binding site on the C-terminal region of Isl1 and thereby transforming Lhx3 from an interneuron-promoting factor to a motor neuron-promoting factor. This switching mechanism enables specific LIM complexes to form in each cell type and ensures that neuronal fates are tightly segregated.

No comments:

Post a Comment