Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, March 21, 2012

Erythropoietin enhances cell proliferation and survival of human fetal neuronal progenitors in normoxia

normoxia - normal atmospheric pressure at sea level, ie. not HBOT.
But hard to read and understand.
http://www.sciencedirect.com/science/article/pii/S0006899312003496
Abstract

Extensive data reporting the neurogenerative, neuroprotective and neuroregenerative potential of erythropoietin (EPO), mainly on RNA level, can be found in the literature. However, there is still a poor knowledge on the response of neuronal progenitor cells (NPC) upon stimulation with EPO in terms of the protein species involved. Herein, the effect of EPO on the proliferation of human mesencephalic NPC (hmNPC) under normoxia is monitored using cellular assays and proteomic analysis (two-dimensional gel electrophoresis and MALDI-TOF mass spectrometry). The administration of EPO increased the proliferation of hmNPC within 4 days after application. It positively influenced the cell-cycle progression by affecting the G2 phase of the cell cycle. A proteomic analysis of the protein expression in hmNPC cultures 4 days after EPO treatment identified 8 proteins differentially expressed in EPO-treated cultures. It is likely that one or more of the identified proteins are involved in cellular pathways that promote cell proliferation and differentiation of hmNPC under normoxia. Their further characterization could provide cellular targets for the development of new therapeutic agents to treat CNS injury. Moreover, as EPO signaling is hypoxia-inducible, our findings may also indicate the beneficial effect of EPO to mimic hypoxia, while bypassing its negative effects, to culture human fetal midbrain-derived progenitor cells.

No comments:

Post a Comment