Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, May 2, 2012

Effects of Robot-Assisted Gait Training on Cardiopulmonary Fitness in Subacute Stroke Patients A Randomized Controlled Study

You can read the previous post and decide for yourself.
 http://nnr.sagepub.com/content/26/4/318.abstract?etoc

Abstract

Background. Robot-assisted gait training has the potential to improve cardiopulmonary fitness after stroke, even for patients who are in the early stages of recovery and not independent ambulators. The authors compared the effects of robot-assisted gait training and conventional physical therapy on cardiopulmonary fitness. Methods. A prospective single-blinded, randomized controlled study of 37 patients receiving inpatient rehabilitation was performed within 1 month after stroke onset. The robot-assisted gait training group (n = 20) received 40 minutes of gait training with Lokomat and 60 minutes of conventional physical therapy each day, whereas the control group (n = 17) received 100 minutes of conventional physical therapy daily. Using a semirecumbent cycle ergometer, changes in cardiopulmonary fitness were investigated using incremental exercise testing. Motor and gait functional recovery was measured according to changes in the lower-extremity score of the Fugl-Meyer Assessment Scale (FMA-L), leg score of the Motricity Index (MI-L), and the Functional Ambulation Category (FAC). Results. Compared with the control group, the robot group showed 12.8% improvement in peak VO2 after training (P < .05). Compared with the control group, the robot group also improved in FMA-L score (P < .05). Conclusion. Patients can be trained to increase their VO2 and lower-extremity strength using a robotic device for stepping during inpatient rehabilitation. This training has the potential to improve cardiopulmonary fitness in patients who are not yet independent ambulators, but that may require more than 2 weeks of continued, progressive training.

No comments:

Post a Comment