Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, May 10, 2012

Clinical application of computerized evaluation and re-education biofeedback prototype for sensorimotor control of the hand in stroke patients

This was discussed  in Sensory Re-Education of the Hand after Stroke by Yekutiel Margaret back in 2000. Which is why I dangle my arm outside the car window when I drive. Don't researchers keep track of previous publications in their area of expertise?
Abstract here:
 http://www.jneuroengrehab.com/content/9/1/26/abstract

Background

Hemianaesthesia patients usually exhibit awkward and inefficient finger movements of the affected hands. Conventionally, most interventions emphasize the improvement of motor deficits, but rarely address sensory capability and sensorimotor control following stroke. Thus it is critical for stroke patients with sensory problems to incorporate appropriate strategies for dealing with sensory impairment, into traditional hand function rehabilitation programs. In this study, we used a custom-designed computerized evaluation and reeducation biofeedback (CERB) prototype to analyze hand grasp performances, and monitor the training effects on hand coordination for stroke patients with sensory disturbance and without motor deficiency.

Methods

The CERB prototype was constructed to detect momentary pinch force modulation for 14 sub-acute and chronic stroke patients with sensory deficiency and 14 healthy controls. The other ten chronic stroke patients (ranges of stroke period: 6-60 months) were recruited to investigate the effects of 4-weeks computerized biofeedback treatments on the hand control ability. The biofeedback procedures provide visual and auditory cues to the participants when the interactive force of hand-to-object exceeded the target latitude in a pinch-up-holding task to trigger optimal motor strategy. Follow-up measurements were conducted one month after training. The hand sensibility, grip forces and results of hand functional tests were recorded and analyzed.

Results

The affected hands of the 14 predominant sensory stroke patients exhibited statistically significant elevation in the magnitude of peak pinch force (p = 0.033) in pinching and liftingup tasks, and poor results for hand function tests (p = 0.005) than sound hands did. In addition, the sound hands of patients were less efficient in force modulation (p = 0.009) than the hands of healthy subjects were. Training with the biofeedback system produced significant improvements in grip force modulation (p = 0.020) and better performances in the subtests of pin insertion (p = 0.019), and lifting of lightweight objects (p = 0.005).

Conclusions

The CERB prototype can provide momentary and interactive information for quantitative assessing and re-educating force modulation appropriately for stroke patients with sensory deficits. Furthermore, the patients could transfer the learned strategy to improve hand function.
Full provisional here:
http://www.jneuroengrehab.com/content/pdf/1743-0003-9-26.pdf

No comments:

Post a Comment