Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, September 6, 2013

A compound CP-31398 suppresses excitotoxicity-induced neurodegeneration

Your doctor should be excited about reading these types of research. If not, why the hell are you seeing them? They are supposed to know more than you.
http://europepmc.org/abstract/MED/23988450


Biomolecular Dynamics Laboratory, Department of Biomolecular Networks, Graduate School of Frontier Biosciences. Electronic address: fujiwara@anat3.med.osaka-u.ac.jp.
Highlight Terms
Neurodegeneration causes dysfunction and degeneration of neurons and is triggered by various factors including genetic defects, free radicals, injury, and glutamate excitotoxicity. Among those, glutamate excitotoxicity is implicated in chronic disorders including AD and ALS, and in acute insults in the CNS including traumatic brain injury. Neurological disorders show hallmark morphological abnormalities such as axon degeneration and cell body death. The molecular mechanisms underlying excitotoxicity-induced neurodegeneration are complex and deciphering a molecular mechanism from one angle is beneficial to understand the process, however, still difficult to develop strategies to suppress excitotoxicity-induced degeneration due to existence of other mechanisms. Thus, directly identifying compounds that can modulate excitotoxicity-induced neurodegeneration and subsequently clarifiying the molecular mechanism is a valid approach to develop effective strategies to suppress neurodegeneration. We searched for compounds that can suppress excitotoxicity-induced neurodegeneration and found that CP-31398, a known compound that can rescue the structure and function of the tumor suppressor protein p53 mutant form and stabilize the active conformation of the p53 wild-type form, suppresses excitotoxicity-induced axon degeneration and cell body death. Moreover, CP-31398 suppresses mitochondrial dysfunction which has a strong correlation with excitotoxicity. Thus, our findings identify a compound that can serve as a novel modulator of neurodegeneration induced by glutamate excitotoxicity.

No comments:

Post a Comment