Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, November 25, 2015

‘Connector Hubs’ Help Brain Network Coordination

Does your doctor even know if these connector hubs were damaged in your stroke? What is the stroke protocol to recover from such damage? Recover not compensate. Does your doctor know ANYTHING AT ALL? Will your doctor be talking to these researchers to see what knowledge can be gained for stroke rehab? Or will your doctor DO NOTHING like usual? I know our stroke associations will do nothing with this, so we are once again screwed like we always are. So much that can be done if only there was a working brain somewhere in stroke leadership.
http://neurosciencenews.com/neural-network-connector-hubs-3159/
Swinging a bat at a 90-mph fastball requires keen visual, cognitive and motor skills. But how do diverse brain networks coordinate well enough to hit the ball?
A new UC Berkeley study suggests the human brain’s aptitude and versatility can be credited in large part to “connector hubs,” which filter and route information. They coordinate and integrate the flow of data so that brain networks dedicated to specific roles, such as vision and movement, can focus on their jobs.
“Our findings show that connector hubs allow for distinct networks to each do their own thing, yet still interact with each other effectively,“ said study lead author Maxwell Bertolero, a Ph.D. student in neuroscience at UC Berkeley.
Moreover, the brain’s two dozen or so connector hubs play a key role in complex cognitive tasks, and are vulnerable to brain damage and dysfunction. Thus, the findings could “help neuroscientists shed more light on the neural bases of disorders such as schizophrenia and Alzheimer’s, ” which are marked by malfunctions in the brain’s wiring, Bertolero said.
The findings are the result of a meta-analysis conducted in January by Bertolero and fellow researchers at UC Berkeley and the National University of Singapore of more than 9,000 brain imaging studies in the BrainMap database that cover more than 75 cognitive tasks.
The study, just published in the Proceedings of the National Academy of Sciences, found heightened neural activity in the brain’s connector hubs during complex tasks, such as puzzles and video games, while networks dedicated to specific functions did not need to put in extra work.
The more complex the task, in that more networks are required for the job, the greater the activity in the connector hubs, keeping the burden off individual networks, the study found.
Like an airline hub, the brain’s main connector hubs link to multiple brain networks like transfer stations. These hubs have been found in the brains of many mammals, including mice and macaque monkeys.
Previous studies have linked connector hubs to the coordination and integration of information between multiple brain networks, but this latest study measured exactly how much of the work was being done by the hubs vis–à–vis networks dedicated to specific tasks.
The experiments used functional magnetic resonance imaging to measure increased blood flow throughout the brain, a marker of increased neural activity, during a wide range of activities, including finger-tapping, whistling, chewing, drawing, writing, reading, watching a movie and playing video games and memory games.
Researchers mapped the brain’s connections as one would analyze a large-scale network such as the U.S electrical grid, global flight patterns or Linkedin professional connections, creating a model of the brain’s “connectome.“
Using “graph theory,” which is used in many scientific fields to study networks, they identified 14 distinct networks of tightly interconnected regions and roughly 25 connector hubs.
They then compared neural activity in the connector hubs to activity in each of the brain’s dedicated networks during all the tasks recorded in the BrainMap database.They found that activity increased only at connector hubs as more networks were required for a task, indicating that connector hubs, but not individual networks, must process more information during these more complex tasks.
Next, Bertolero said, he and his co-authors plan to look into why evolution built a brain with distinct networks and connector hubs, precisely how connector hubs integrate and coordinate, and what happens when they are damaged by a stroke, for example.

Cool picture at link.

No comments:

Post a Comment