Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, February 27, 2016

Neurogenesis in the Pediatric Brain Following Ischemic Stroke: a Potential Target for Endogenous Regeneration and Repair

The extremely obvious question is: Should stroke survivors be treated with young blood and young gut bacteria to maybe mimic the youthfulness of the brain and thus get better neurogenesis? We'll never know because NO one in stroke is leading or has any type of strategy being followed. Your children and grandchildren are screwed if they have a stroke.
http://stroke.ahajournals.org/content/47/Suppl_1/A70.short

  1. Paco S Herson4
+ Author Affiliations
  1. 1Dept of Pharmacology, Dept of Pharmacology, Univ of Colorado Denver, Anschutz Med Campus, Aurora, CO
  2. 2Dept of Cell and Developmental Biology, Dept of Cell and Developmental Biology, Univ of Colorado Sch of Medicine, Aurora, CO
  3. 3Dept of Anesthesiology, Dept of Anesthesiology, Univ of Colorado Denver, Anschutz Med Campus, Aurora, CO
  4. 4Depts of Pharmacology & Anesthesiology, Depts of Pharmacology & Anesthesiology, Univ of Colorado Denver, Anschutz Med Campus, Aurora, CO

Abstract

Introduction: Following stroke, neurons are seriously damaged or die, impairing local brain function and contributing to long-term disability. Mounting evidence suggests that stroke recovery in children is enhanced compared to adults. Neurogenesis, a process involving the generation of functionally integrated neurons from progenitor cells, may play a role in enhanced plasticity and neuronal repair. Stroke-induced neurogenesis in adults involves massive proliferation and migration of newborn neurons, however these newborn neurons go on to die, never repopulating areas of damage. We tested the hypothesis that neurogenesis in the young brain effectively repopulates injured regions following ischemia.
Methods: Stroke was induced in adult (2-3 mo, n=21) and pediatric (P20-25, n=21) mice by 45-min right middle cerebral artery occlusion (MCAo). Bromodeoxyuridine (BrdU) was injected on days 3 and 4, and mice sacrificed at 24 hr, 7 d or 30 d after recovery from MCAo. Immunohistochemistry was performed to assess cellular proliferation and neurogenesis.
Results: The results revealed extensive neuronal cell death in the striatum of both pediatric and adult mice at 24 hr and 7 d after stroke. Remarkably, significant numbers of healthy, mature neurons (NeuN+) were observed in the striatum of pediatric mice at 30 d post-injury. Birth-dating with BrdU demonstrated robust, ischemia-induced proliferation of neural progenitor cells in both adult and pediatric brain. Consistent with previous reports, we observed very few mature NeuN+ neurons double labeled with BrdU in the injured adult brain. In contrast, significant numbers of BrdU+NeuN cells were observed in the pediatric brain 30 d after MCAo, indicative of mature neurons and most importantly, with COUP-TF1-interacting protein 2 (Ctip2) expression, a marker of medium spiny striatal neurons.
Conclusion: Our results indicate that cerebral ischemia in pediatric mice increases neurogenesis and migration to sites of damage, and supports the possibility of true neuronal replacement in the pediatric brain. These findings have exciting implications for heightened restorative processes in the pediatric brain microenvironment.

No comments:

Post a Comment