Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, May 7, 2016

Proxy-based sliding mode control of a robotic ankle-foot system for post-stroke rehabilitation

Ask your doctor how this would work.  My physical therapist set me up with an AFO, the doctor had nothing to do with it except sign the order.

Proxy-based sliding mode control of a robotic ankle-foot system for post-stroke rehabilitation


DOI:
10.1080/01691864.2016.1176601
Geng Chenace, Zhihao Zhouace, Bram Vanderborghtbc, Ninghua Wangde & Qining Wangace*
Robotic platform-based ankle–foot rehabilitation systems have been proved effective in treating joint spasticity and/or contracture of stroke survivors. However, simple force or velocity limiters are not adequate, since they cannot explicitly guarantee slow and overdamped motions without overshoot. In this paper, we propose a proxy-based sliding mode control (PSMC)-based approach, to avoid unsafe behaviors of a robotic ankle–foot rehabilitation system. The proposed method has three advantages: (1) without deteriorating tracking performance during normal operation, it guarantees overdamped, slow, and safe recoveries after abnormal events; (2) it provides a simple and accurate way to confine the output torque exerted on the subject’s ankle; (3) though effective, the control law avoids the necessity to identify the specific system model or build state observer, which is usually difficult for human–robot interaction system. A 71-year-old stroke patient and 10 able-bodied subjects were recruited for the experiments. Preliminary studies comparing PSMC and PID are performed on trajectory tracking, controlled torque output, slow and safe response under disturbance. Additionally, by fulfilling the rehabilitation method and obtaining biomechanical indicators, the proposed controller is proved to be feasible for the system.

No comments:

Post a Comment