Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Tuesday, October 30, 2018

Ischemic Stroke Increases Heart Vulnerability to Ischemia-Reperfusion and Alters Myocardial Cardioprotective Pathways

What EXACTLY is your stroke doctor and hospital doing to ensure this problem is solved? Sitting on their asses sucking their thumbs, most likely? They need to solve this since it is most likely contributing to 30 day stroke deaths.

Ischemic Stroke Increases Heart Vulnerability to Ischemia-Reperfusion and Alters Myocardial Cardioprotective Pathways


Originally publishedStroke. 2018;49:2752–2760

Abstract

Visual Overview



Background and Purpose—

For years, the relationship between cardiac and neurological ischemic events has been limited to overlapping pathophysiological mechanisms and common risk factors. However, acute stroke may induce dramatic changes in cardiovascular function. The aim of this study was to evaluate how prior cerebrovascular lesions affect myocardial function and signaling in vivo and ex vivo and how they influence cardiac vulnerability to ischemia-reperfusion injury.

Methods—

Cerebral embolization was performed in adult Wistar male rats through the injection of microspheres into the left or right internal carotid artery. Stroke lesions were evaluated by microsphere counting, tissue staining, and assessment of neurological deficit 2 hours, 24 hours, and 7 days after surgery. Cardiac function was evaluated in vivo by echocardiography and ex vivo in isolated perfused hearts. Heart vulnerability to ischemia-reperfusion injury was investigated ex vivo at different times post-embolization and with varying degrees of myocardial ischemia. Left ventricles (LVs) were analyzed with Western blotting and quantitatve real-time polymerase chain reaction.

Results—

Our stroke model produced large cerebral infarcts with severe neurological deficit. Cardiac contractile dysfunction was observed with an early but persistent reduction of LV fractional shortening in vivo and of LV developed pressure ex vivo. Moreover, after 20 or 30 minutes of global cardiac ischemia, recovery of contractile function was poorer with impaired LV developed pressure and relaxation during reperfusion in both stroke groups. Following stroke, circulating levels of catecholamines and GDF15 (growth differentiation factor 15) increased. Cerebral embolization altered nitro-oxidative stress signaling and impaired the myocardial expression of ADRB1 (adrenoceptor β1) and cardioprotective Survivor Activating Factor Enhancement signaling pathways.

Conclusions—

Our findings indicate that stroke not only impairs cardiac contractility but also worsens myocardial vulnerability to ischemia. The underlying molecular mechanisms of stroke-induced myocardial alterations after cerebral embolization remain to be established, insofar as they may involve the sympathetic nervous system and nitro-oxidative stress.

No comments:

Post a Comment