Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, March 18, 2020

Motor-Equivalent Intersegmental Coordination Is Impaired in Chronic Stroke

 Who fucking cares if it is impaired? The only goal in stroke is solutions to 100% recovery and this does nothing for that. Maybe if you specified the exact research still needing to be done to solve this problem I could give it a pass, but no, nothing of the sort.

Motor-Equivalent Intersegmental Coordination Is Impaired in Chronic Stroke 

First Published January 24, 2020 Research Article Find in PubMed



Background.
Kinematic abundance permits using different movement patterns for task completion. Individuals poststroke may take advantage of abundance by using compensatory trunk displacement to overcome upper limb (UL) movement deficits. However, movement adaptation in tasks requiring specific intersegment coordination may remain limited.  
Objective.
 We tested movement adaptation in both arms of individuals with chronic stroke (n = 16) and nondominant arms of controls (n = 12) using 2 no-vision reaching tasks involving trunk movement (40 trials/arm).  
Methods.
In the “stationary hand task” (SHT), subjects maintained the hand motionless over a target while leaning the trunk forward. In the “reaching hand task” (RHT), subjects reached to the target while leaning forward. For both tasks, trunk movement was unexpectedly blocked in 40% of trials to assess the influence of trunk movement on adaptive arm positioning or reaching. UL sensorimotor impairment, activity, and sitting balance were assessed in the stroke group. The primary outcome measure for SHT was gain (g), defined as the extent to which trunk displacement contributing to hand motion was offset by appropriate changes in UL movements (g = 1: complete compensation) and endpoint deviation for RHT.  
Results.
Individuals poststroke had lower gains and greater endpoint deviation using the more-affected compared with less-affected UL and controls. Those with less sensorimotor impairment, greater activity levels, and better sitting balance had higher gains and smaller endpoint deviations. Lower gains were associated with diminished UL adaptability.  
Conclusions.
 Tests of condition-specific adaptability of interjoint coordination may be used to measure UL adaptability and changes in adaptability with treatment.

No comments:

Post a Comment