Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, March 17, 2020

Antisecretory Factor May Reduce ICP in Severe TBI—A Case Series

Would this work in hemorrhagic stroke? Reduce the pressure?  WHOM is your doctor and stroke hospital contacting to get that answered? Or will incompetence occur again by DOING NOTHING?

Antisecretory Factor May Reduce ICP in Severe TBI—A Case Series

  • 1Department of Neurosurgery, Skane University Hospital, Lund, Sweden
  • 2Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
Traumatic brain injury (TBI) constitutes a global epidemic. Overall outcome is poor, with mortality ranging from 10 to 70% and significant long-term morbidity. Several experimental reports have claimed effect on traumatic edema, but all clinical trials have failed. Antisecretory factor, an endogenous protein, is commercially available as Salovum®, which is classified as a medical food by the European Union and has been proven effective in experimental trauma models. It has, however, previously not been tested in humans with severe TBI. We hereby report a case series of five adult patients with severe TBI, treated with Salovum. The objective of the intervention was to evaluate safety and, if possible, its effect on intracranial pressure and outcome. Patients received 1 g Salovum per kilo of body weight divided into six doses per 24 h. Each dose was administered through the nasogastric tube. Patients were scheduled for 5 days of treatment with Salovum. Intracranial pressure was controlled in all patients. In three of five patients, intracranial pressure could be controlled with Salovum and deep sedation (no barbiturates), except during periods of gastroparesis. Five of five patients had a favorable short-term outcome, and four of five patients had a favorable long-term outcome. No toxicity was observed. We conclude that at least three of the five treated patients experienced an effect of Salovum with signs of reduction of intracranial pressure and signs of clinical benefit. In order to validate the potential of antisecretory factor in TBI, a prospective, randomized, double-blind, placebo-controlled trial with Salovum has been initiated. Primary outcome for the trial is 30-day mortality; secondary outcomes are treatment intensity level, intracranial pressure, and number of days at the neurointensive care unit.

Introduction

Traumatic brain injury (TBI) constitutes a global burden despite the fact that mortality and morbidity have been reduced in several countries during the last decades (1, 2). Advances in neurointensive care, cerebral monitoring, and neuroradiology have improved outcome for patients with severe TBI, but the results globally are still poor with a mortality ranging from 10 to 70% and significant long-term morbidity (3).
Traumatic brain injury encompasses several pathogenic mechanisms as primary mechanical injury and hemorrhage followed by secondary events such as vasospasm, inflammation, excitotoxic cell damage, and energy deprivation but also long-term progressive brain tissue degeneration. One common denominator in TBI is cerebral edema, which may cause raised intracranial pressure (ICP) and is a major factor responsible for mortality and morbidity in TBI (4). The pathophysiologic mechanisms of cerebral edema are, however, only partially known (5).
Although several experimental reports have claimed effect on traumatic cerebral edema, all clinical trials have failed (6).
Antisecretory factor (AF) is a 41-kDa endogenous protein proposed to possess both antisecretory and anti-inflammatory effects (7). The exact mechanism of AF is unknown, but it has been proposed to act by modulation of proteasomes, complement, and myeloid cells (810). A recent report shows that AF inhibits the NKCC1 ion pump; the latter also has been implicated in the evolution of edema in TBI (11, 12).
Salovum® is an egg yolk powder enriched for AF and classified as food for specific medical purposes in the EU. Salovum has been used in clinical trials for gastroenteritis and Ménière inflammatory bowel disease, and no toxicity has been reported [Lantmännen Functional Foods AB Besöksadress: S:t Göransgatan 160, Stockholm, Sweden, (13)].
The functional part of AF has been synthesized within a 16-amino-acid peptide, AF16. AF16 and AF have shown effects against cerebral edema and increased ICP in models of herpes encephalitis and TBI (14, 15).
We hereby report the first five patients with severe TBI, treated with the AF-enriched dietary supplement Salovum with the aim to assess ICP control and clinical outcome.

More at link. 

No comments:

Post a Comment