6 years since this came out and I bet your stroke hospital still doesn't have a music protocol. They've been incompetent much longer than that in not implementing stroke research. Why do they consider themselves a 'stroke' hospital?
music (94 posts back to March 2011)
music therapy (53 posts back to October 2014)
musical training (13 posts back to June 2014)
Home-based neurologic music therapy for upper limb rehabilitation with stroke patients at community rehabilitation stage—a feasibility study protocol
Front. Hum. Neurosci., 23 September 2015
| https://doi.org/10.3389/fnhum.2015.00480
- 1Music and Performing Arts, Music for Health Research Centre, Anglia Ruskin University, Cambridge, UK
- 2Music Therapy Program, Boyer College of Music and Dance, Temple University, Philadelphia, PA, USA
- 3Department of Psychiatry, University of Cambridge, Cambridge, UK
- 4National Institute for Health Research, Collaborations for Leadership in Applied Health Research and Care, Cambridgeshire and Peterborough NHS Trust, Cambridge, UK
- 5Oliver Zangwill Centre for Neuropsychological Rehabilitation, Ely, UK
- 6Cambridgeshire Community Services NHS Trust, St Ives, UK
Background: Impairment of upper limb function following stroke is more common than lower limb impairment and is also more resistant to treatment. Several lab-based studies with stroke patients have produced statistically significant gains in upper limb function when using musical instrument playing and techniques where rhythm acts as an external time-keeper for the priming and timing of upper limb movements.
Methods: For this feasibility study a small sample size of 14 participants (3–60 months post stroke) has been determined through clinical discussion between the researcher and study host in order to test for management, feasibility and effects, before planning a larger trial determined through power analysis. A cross-over design with five repeated measures will be used, whereby participants will be randomized into either a treatment (n = 7) or wait list control (n = 7) group. Intervention will take place twice weekly over 6 weeks. The ARAT and 9HPT will be used to measure for quantitative gains in arm function and finger dexterity, pre/post treatment interviews will serve to investigate treatment compliance and tolerance. A lab based EEG case comparison study will be undertaken to explore audio-motor coupling, brain connectivity and neural reorganization with this intervention, as evidenced in similar studies.
Discussion: Before evaluating the effectiveness of a home-based intervention in a larger scale study, it is important to assess whether implementation of the trial methodology is feasible. This study investigates the feasibility, efficacy and patient experience of a music therapy treatment protocol comprising a chart of 12 different instrumental exercises and variations, which aims at promoting measurable changes in upper limb function in hemiparetic stroke patients. The study proposes to examine several new aspects including home-based treatment and dosage, and will provide data on recruitment, adherence and variability of outcomes.
Background
There are approximately 152,000 people affected by stroke in the UK every year (British Heart Foundation, 2012) causing more disability in adults than any other disease or condition. More than 50% of these report severe disability (Adamson et al., 2004b) and face long-term dependency on others for support with daily activities in their home (Adamson et al., 2004a). The mean length of stay in hospital for stroke patients in the UK has fallen from 32 days in 2000 to 20 days in 2010 (British Heart Foundation, 2012). Community services, sometimes referred to as “early supported discharge teams,” and other community based rehabilitation teams are reported to improve outcomes for stroke patients, but an audit in 2010 recorded only 36% of hospitals in the UK were providing such services (Department of Health, 2010). A shortfall in spending on chronic stroke rehabilitation is also reported in the US (Miller et al., 2010), despite the fact that studies have shown improvements in outcomes for patients when interventions continue from acute care into the community up to five years after stroke (Fens et al., 2013).
Weakness on one side, or hemiparesis, is the most commonly encountered sensorimotor impairment following ischaemic or haemorrhagic stroke (Sabini et al., 2013), occurring in 80% of patients (Adey-Wakeling and Crotty, 2013). Hemiparesis has a profound effect on patients' ability to perform ADLs such as washing, dressing, cooking and eating, and is extremely resistant to rehabilitation treatments. The total financial costs resulting from stroke in 2009, including direct health care costs, productivity loss and informal care were £3,741,682 (British Heart Foundation, 2012). Other estimates put the annual cost figure at 7 billion with 2.8 billion comprising direct healthcare costs (Bhatnagar et al., 2010).
Research beginning in the 1990s into rhythm driven interventions for gait training following stroke and traumatic brain injury (Thaut et al., 1993, 1997, 2007; Prassas et al., 1997; Hurt et al., 1998), in Parkinson's disease (Thaut et al., 1996; McIntosh et al., 1997), and with cerebral palsy (Kwak, 2007; Kim et al., 2011, 2012) has resulted in a well evidenced intervention known as Rhythmic Auditory Stimulation (RAS). RAS is reported to improve gait parameters including stride length and symmetry with stroke patients, with further research recommended into rhythm driven interventions in neurorehabilitation (Bradt et al., 2010). Building on this research Thaut et al. (2002) and Malcolm et al. (2009a) found evidence for the application of rhythm driven interventions in upper limb rehabilitation, with participants making significant improvements in movement trajectories and quality of arm movement. Motivation is a major factor that, when lacking, can hinder engagement in rehabilitation programs, and a number of other studies illustrate the use of music and the inclusion of music therapy within multidisciplinary rehabilitation in order to improve patient mood and enhance motivation (Nayak et al., 2000; Jochims, 2004; Magee et al., 2006; Craig, 2008; Sarkamo et al., 2008; Magee and Baker, 2009; Street, 2012). Using electronic drums supported with live music from the music therapist, Paul and Ramsey (1998) found clinical (but not statistical) significance in increased active shoulder and elbow range for stroke participants. Sharing some features with this study, Music Supported Therapy (MST) is a recently researched intervention in which participants played through a series of increasingly complex musical exercises using electronic drum pads and keyboard. Results from these studies have consistently shown statistically significant improvements for participants' upper limb function, also evidencing neural reorganization using EEG and fMRI technology (Schneider et al., 2007; Rojo et al., 2011; Altenmüller et al., 2009; Grau-Sánchez et al., 2013). EEG was recorded during playing, i.e., hitting a key or a drum pad, which would indicate an event in the EEG. Pre-post therapy results in the music group showed an increase of Event-Related-Desynchronization and coherence in the beta band indicating reorganization of motor patterns (Altenmüller et al., 2009). Rojo et al.'s case study indicated that music patterns that were listened to before they were played by participants showed increased activation of motor and auditory regions when listening after the patterns had been learned, at the end of treatment (Rojo et al., 2011). Evidence suggesting that the music generated by the participants' playing during these studies has induced neural reorganization, whereby the auditory cortices appear to be incorporated into motor circuits, has prompted use of the term “audio-motor coupling” (Rojo et al., 2011), a phenomenon also observed within minutes of novice piano players beginning to practice (Classen et al., 1998). Musical motor performance involves the same brain regions as other motor tasks, those being the: motor, premotor, supplementary motor area (SMA), the cerebellum and the basal ganglia, as well as somatosensory, auditory, emotional, temporal, and memory loops (Altenmüller, 2001; Lotze et al., 2003; Meister et al., 2004). Musicians perform complex movement patterns, which are informed by continuous auditory feedback from their playing (Altenmüller et al., 2009), and feedback from movements is fundamentally important in order to inform and control them (Carpenter and Reddi, 2012).
Therapeutic Instrumental Music Performance (TIMP) is a Neurologic Music Therapy intervention (NMT) used in neurorehabilitation which employs external audio cues during music based activities in which the selection and spatial arrangement of instruments facilitates improved upper limb movement trajectories and arm kinematics (Thaut, 2008). Jeong and Kim (2007) suggest that the combination of rhythmic music and movement attuned to it creates a powerful neurological stimulus that may increase the plasticity of the nervous system. TIMP is one of a number of NMT interventions applied to sensorimotor, cognitive and communication rehabilitation (Thaut, 2008). It involves the planning of functional therapeutic musical experiences to meet functional physical goals, set within the multidisciplinary team, with the aim of transferring the therapeutic learning into real-world applications. Whilst evidence has emerged from the aforementioned studies regarding the effects of either rhythm or musical instrument playing on neural reorganization and upper limb movement trajectories, there have been very few that combine these elements to form a unified treatment protocol matching that of TIMP. Lim et al. (2011) investigated its effects on perceived exertion and fatigue, with positive findings, but did not measure for any physiological change. Paul and Ramsey's (1998) study matches the TIMP protocol, but was delivered in a group setting. Yoo (2009) conducted a study using TIMP in a lab setting with three chronic stroke patients and found evidence of improved wrist and hand function, as well as increased movement velocity.
Music therapy is not commonly associated with, nor found within, neurorehabilitation settings; in 2005 only four neurorehabilitation units in the UK employed a music therapist (Magee et al., 2006). Musical instrument playing is not widely recognized as a feasible and effective, short-term intervention for treating movement disorders resulting from stroke, a patient group within which there is a high level of heterogeneity as regards upper limb hemiparesis, cognitive, sensory and communication impairments. Yoo's study, which included three participants, was conducted at Colorado State University, a major center for NMT research and training. Participants were recruited from a facility managed by their center for biomedical research in music. Heterogeneity influences decisions regarding inclusion criteria; if it is too specific, then recruitment can be slow, too broad and heterogeneity introduces more variables, which in turn may skew statistical outcomes. In either case, a further influence is the pool size from which patients will be recruited; the geographical area and whether single or multi-site.
Home based and combined home/clinic training programs for sensorimotor treatment have been trialed previously using RAS gait training with Parkinson's patients (Thaut et al., 1996), rhythmic auditory cueing for upper limb reaching kinematics with stroke patients (Malcolm et al., 2009b), and computer gaming (King et al., 2012), however, all other research relating to this topic has been laboratory based. There is a lack of research investigating sensorimotor interventions with patients at the home-based community stage of rehabilitation. Previous studies investigating musical instrument playing have included in-patients, who were, on average, approximately 2 months post-stroke (Schneider et al., 2007; Altenmüller et al., 2009; Grau-Sánchez et al., 2013). One study using a rhythm and music-based therapy program included participants at 1–5 years post stroke (Bunketorp Kall et al., 2012). This study will include participants 3–60 months post stroke, defined as being at the chronic stage of recovery (Barrett and Meschia, 2013).
Frequency of therapy sessions in existing studies has been predominantly 5 days per week for 3–4 weeks (Schneider et al., 2007; Altenmüller et al., 2009; Malcolm et al., 2009a; Rojo et al., 2011; Amengual et al., 2013), which is comparable with typical modified constraint induced movement therapy (mCIMT) delivery (Earley et al., 2010), and the music therapy treatment has usually been compared with other forms of standard care or combined music therapy/standard care. Early versus late treatment using RAS in gait training has been trialed (Hayden et al., 2009), but music therapy treatment for upper limb rehabilitation has not been investigated using a wait list design. The feasibility of delivering RAS for stroke patients as part of standard care has been explored (Hayden et al., 2009). Owing to the innovative nature of this intervention and recruitment of participants from within an NHS trust where neurologic music therapy is not recognized or available, participants will be recruited after discharge from community stroke rehabilitation services.
The study reported here will build upon the existing knowledge of music's effect on neuroplasticity (Schneider et al., 2007; Altenmüller et al., 2009; Rojo et al., 2011; Amengual et al., 2013) and translate this knowledge into a clinical protocol that may improve patient outcomes. Thus, it will add to limited, existing research into musical instrument playing, rhythm and upper limb rehabilitation following stroke. It will also address questions concerning dosage, setting and the timing of treatment delivery. Whereas most of the research to date on this topic has been laboratory based, this study provides a novel intervention that will be delivered one-to-one, in participants' homes. It will therefore examine the feasibility of home treatment delivery at the end of standard community care. In addition, participant experience of TIMP recorded via semi-structured interview will provide data regarding motivation, access and compliance to treatment. Frequency of sessions will be reduced compared to previous studies, in order to determine whether it is still effective at a lower dosage and to ensure that the sample size can be treated within the timeframes and resources available for this research.
No comments:
Post a Comment