Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, February 20, 2023

Innovative method reveals new antioxidants in beef, chicken, and pork

Will your doctor and nutritionist do any followup to get more complete research done?  And a protocol created?

Innovative method reveals new antioxidants in beef, chicken, and pork

Imidazole dipeptides (IDPs), which are abundant in meat and fish, are substances produced in the bodies of various animals, including humans, and have been reported to be effective in relieving fatigue and preventing dementia. However, the physiological mechanism by which IDPs exhibit these activities had not been determined previously.

A research team, led by Professor Hideshi Ihara from the Osaka Metropolitan University Graduate School of Science, was the first to discover 2-oxo-imidazole-containing dipeptides (2-oxo-IDPs)-;which have one more oxygen atom than normal IDPs-;and found that they are the most common variety of IDPs derivatives in the body. The researchers also found that they have remarkably high antioxidant activity.

In their study, the researchers established a method for selective and highly sensitive detection of five types of 2-oxo-IDPs using mass spectrometry, which enables quantitative detection of trace 2-oxo-IDPs in living organisms. Using this method, they revealed for the first time that beef, pork, chicken, and other meats contain antioxidants, not only IDPs but a variety of different 2-oxo-IDPs. Their findings were published in Antioxidants.

We hope that this research method, which enables advanced analysis of 2-oxo-IDPs, will be applied not only to basic biology but also to medicine, agriculture, and pharmacy, where it will help improve peoples' health and prevent diseases."

Professor Hideshi Ihara from the Osaka Metropolitan University Graduate School of Science

Source:
Journal reference:

Komae, S., et al. (2023) Quantitative Determination of 2-Oxo-Imidazole-Containing Dipeptides by High-Performance Liquid Chromatography/Tandem Mass Spectrometry. Antioxidants. doi.org/10.3390/antiox11122401.

No comments:

Post a Comment