Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, August 26, 2024

Decreased Quantitative Cerebral Blood Volume Is Associated With Poor Outcomes in Large Core Patients

 So you lazily described a problem but DID NOTHING TO SOLVE IT!  The business world fires people for such incompetence!

Decreased Quantitative Cerebral Blood Volume Is Associated With Poor Outcomes in Large Core Patients

  • Media

  • Abstract

    BACKGROUND:

    Recent large core trials have highlighted the effectiveness of mechanical thrombectomy (MT) in acute ischemic stroke with large vessel occlusion. Variable perfusion-imaging thresholds and poor Alberta Stroke Program Early Computed Tomography Score reliability underline the need for more standardized, quantitative ischemia measures for MT patient selection. We aimed to identify the computed tomography perfusion parameter most strongly associated with poor outcomes in patients with acute ischemic stroke-large vessel occlusion with significant ischemic cores.

    METHODS:

    In this study from 2 comprehensive stroke centers from 2 comprehensive stroke centers within the Johns Hopkins Medical Enterprise (Johns Hopkins Hospita—East Baltimore and Bayview Medical Campus) from July 29, 2019 to January 29, 2023 in a continuously maintained database, we included patients with acute ischemic stroke-large vessel occlusion with ischemic core volumes defined as relative cerebral blood flow <30% and ≥50 mL on computed tomography perfusion or Alberta Stroke Program Early Computed Tomography Score <6. We used receiver operating characteristics to find the optimal cutoff for parameters like cerebral blood volume (CBV) <34%, 38%, 42%, and relative cerebral blood flow >20%, 30%, 34%, 38%, and time-to-maximum >4, 6, 8, and 10 seconds. The primary outcome was unfavorable outcomes (90-day modified Rankin Scale score 4–6). Multivariable models were adjusted for age, sex, diabetes, baseline National Institutes of Health Stroke Scale, intravenous thrombolysis, and MT.

    RESULTS:

    We identified 59 patients with large ischemic cores. A receiver operating characteristic curve analysis showed that CBV<42% ≥68 mL is associated with unfavorable outcomes (90-day modified Rankin Scale score 4–6) with an area under the curve of 0.90 (95% CI, 0.82–0.99) in the total and MT-only cohorts. Dichotomizing at this CBV threshold, patients in the ≥68 mL group exhibited significantly higher relative cerebral blood flow, time-to-maximum >8 and 10 seconds volumes, higher CBV volumes, higher HIR, and lower CBV index. The multivariable model incorporating CBV<42% ≥68 mL predicted poor outcomes robustly in both cohorts (area under the curve for MT-only subgroup was 0.87 [95% CI, 0.75–1.00]).

    CONCLUSIONS:

    CBV<42% ≥68 mL most effectively forecasts poor outcomes in patients with large-core stroke, confirming its value alongside other parameters like time-to-maximum in managing acute ischemic stroke-large vessel occlusion.

    Graphical Abstract

    Get full access to this article

     

    No comments:

    Post a Comment