Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, May 3, 2025

Industrial-grade collaborative robots for motor rehabilitation after stroke and spinal cord injury: a systematic narrative review

 You're fired for delivering nothing that get patients recovered! But you did get published, so congratulations on that useless win.

Industrial-grade collaborative robots for motor rehabilitation after stroke and spinal cord injury: a systematic narrative review

Abstract

Background

There is a growing interest in exploring industrial-grade collaborative robots (cobots) for rehabilitation. This review explores their application for motor rehabilitation of the upper and lower extremities after a stroke and spinal cord injury (SCI). The article highlights the inherent safety features of cobots, emphasizing their design advantages over custom-built or traditional rehabilitation robots in terms of potential safety and time efficiency.

Methods

Database searches and reference list screening were conducted to identify studies relating to the use of cobots for upper and lower extremity rehabilitation among individuals with stroke and SCI. These articles were then reviewed and summarized.

Results

Thirty-three studies were included in this review. The findings suggest that the use of cobots in motor rehabilitation is still in the early stages. Some of the cobots used were equipped with sensors to detect and respond to the movement of the extremities and minimize the risk of injury. This safety aspect is crucial for patients with motor impairments. Most training protocols implemented with the cobots engaged users in repetitive task-based exercises with an overall positive user experience. Thus far, these devices have been primarily evaluated in individuals with stroke and SCI that affect the lower extremities, with no study addressing upper extremity impairments. This initial focus serves as a preliminary step toward assessing their applicability for individuals with stroke and SCI.

Conclusions

Cobots may(What a weasel word, saying nothing!) have the capacity to transform therapy and support healthcare professionals in delivering more personalized and effective rehabilitation. However, there is limited evidence on their use to support upper and lower extremity rehabilitation among individuals with stroke and SCI. Further research and development are needed to refine these technologies and broaden their applications in rehabilitation settings to enhance functional recovery and overall quality of life for individuals with stroke and SCI.

No comments:

Post a Comment