Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, June 22, 2011

Neuroprotective and Ameliorative Actions of Polyunsaturated Fatty Acids Against Neuronal Diseases:

So does this mean I can eat fatty foods?

Neuroprotective and Ameliorative Actions of Polyunsaturated Fatty Acids Against Neuronal Diseases:
Implication of Fatty Acid–Binding Proteins (FABP) and G Protein–Coupled Receptor 40 (GPR40) in Adult Neurogenesis
http://www.jstage.jst.go.jp/article/jphs/116/2/116_163/_article
ABSTRACT: Adult neurogenesis in the mammalian brain is well-known to occur in the subgranular zone of the hippocampus. As the hippocampus is related to learning, memory, and emotions, adult hippocampal neurogenesis possibly contributes to these functions. Adult neurogenesis is modulated by polyunsaturated fatty acids (PUFA) such as docosahexaenoic and arachidonic acids that are essential for normal brain development, maintenance, and function. They are reported to improve spatial learning and memory in rodents and cognitive functions in humans. However, detailed mechanisms of PUFA effects still remain obscure. PUFA are functionally linked with chaperons called fatty acid–binding proteins (FABP). FABP uptake and transport PUFA to different intracellular organelles. Intriguingly, PUFA were determined as ligands for G protein–coupled receptor 40 (GPR40), a cell membrane receptor abundantly expressed in the brain and the pancreas of primates. While the role of GPR40 in pancreatic β-cells is associated with insulin secretion, its role in the brain is not yet clarified presumably because of its absence in the rodent brain. The purpose of this review is to discuss the role of PUFA in adult neurogenesis, considering the role of GPR40 and FABP in the hippocampal neurogenic niche. Here, the authors would like to introduce a PUFA–GPR40 signaling pathway that is specific for the primate brain.

No comments:

Post a Comment