Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Sunday, July 15, 2012

Astrocytes and Developmental Plasticity in Fragile X

This doesn't really help us directly but we do need to know as much about astrocytes as possible. All knowledge on the brain is good.
http://www.hindawi.com/journals/np/2012/197491/
Abstract
        A growing body of research indicates a pivotal role for astrocytes at the developing synapse. In particular, astrocytes are dynamically involved in governing synapse structure, function, and plasticity. In the postnatal brain, their appearance at synapses coincides with periods of developmental plasticity when neural circuits are refined and established. Alterations in the partnership between astrocytes and neurons have now emerged as important mechanisms that underlie neuropathology. With overall synaptic function standing as a prominent link to the expression of the disease phenotype in a number of neurodevelopmental disorders and knowing that astrocytes influence synapse development and function, this paper highlights the current knowledge of astrocyte biology with a focus on their involvement in fragile X syndrome.
       
        1. Introduction
        In recent years, it has been revealed that astrocytes perform a significantly wider range of functions than previously appreciated. Interest in astrocyte function has increased dramatically because of their newly discovered roles in synapse formation, maturation, efficacy, and plasticity. Today, astrocytes are recognized as multifunctional cells with well-defined essential neuron supporting functions. Mounting evidence suggests that these versatile cells participate in a multitude of diverse processes in the central nervous system (CNS). These roles include regulating blood flow, providing much needed energy to neurons, and supplying the building blocks of neurotransmitters that fuel synapse activity [1]. However, the roles of astrocytes are not restricted to supporting neuronal function [2]. The addition of their role in synaptic function to the known repertoire of astrocyte activities over the past decade has enhanced our conception of their seminal importance in normal functioning of the adult brain. More comprehensive reviews highlighting astrocyte function include Jacobs et al. [3], Wang and Bordey [4], and Kimelberg [5].

No comments:

Post a Comment