Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, July 4, 2012

Kinematic motion analysis and muscle activation patterns of continuous reaching in survivors of stroke

This researcher really needs to think before coming up with simplistic explanations for problems in reaching. Try  objectively measuring spasticity and see where that causes problems in reaching.
http://www.ncbi.nlm.nih.gov/pubmed/22647246

Abstract

ABSTRACT Coordinated reaching requires continuous interaction between the efferent motor output and afferent feedback; this interaction may be significantly compromised following a stroke. The authors sought to characterize how survivors of stroke generate continuous, goal-directed reaching. Sixteen survivors of stroke completed functional testing of the stroke-affected side and a continuous reaching task between 2 targets with both sides. Motion analysis and electromyography data were collected to determine segmental contributions to reach (e.g., amount of compensatory trunk), spatiotemporal parameters (e.g., peak velocities), and muscle activation patterns (MAP). Repeated measures analyses of variance compared how survivors of stroke reach with the stroke-affected versus less affected sides. Correlations were determined between kinematic outcomes and functional ability. Participants used significantly more trunk movement and less shoulder flexion and elbow extension when reaching with the stroke-affected side. This corresponded with less muscle activity in the proximal musculature including the anterior, middle, and posterior deltoid on the stroke-affected side. There were significant correlations between the segmental contributions to reach, functional ability, and MAPs. Survivors of stroke generate reduced MAPs in the stroke-affected side corresponding to altered segmental kinematics and function ability. These findings suggest that impairments in the ability to generate sufficient MAPs may contribute to the difficulty in generating continuous reaching motions.

1 comment:

  1. Reaching is what delivers the hand to its target. Since objects can be in a kazillion places in space reaching is not a small thing.

    ReplyDelete