Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, April 8, 2015

New understanding of stroke damage may aid recovery

My god, this is incredibly obvious and should have been figured out decades ago. By creating and looking at 3d scans of the brain our doctors should have been able to map spherical damage areas based upon the location of the infarct. Damage wouldn't stay contained within the 2-3 milliliter thick cortex. I really think our stroke medical professionals must not have more than two neurons that they rub together. So based upon this new knowledge our researchers need to work on promoting axonal pathfinding/sprouting and dendritic branching.
https://news.wustl.edu/news/Pages/New-understanding-of-stroke-damage-may-aid-recovery.aspx
Stroke can lead to a wide range of problems such as depression and difficulty moving, speaking and paying attention. Scientists have thought these issues were caused by damage to the brain’s “computer processors” — cells in the brain’s outer layer that do much of the work involved in higher brain functions.
But a new study by researchers at Washington University School of Medicine in St. Louis has found compelling evidence that stroke damage to “cables” buried inside the brain plays an important role in these impairments. The cables connect cells on the brain’s surface to each other, to other cells deep in the brain and to cells in the spinal cord that link the brain to the rest of the body.

“This study provides a new framework to think about the damage caused by stroke,” said senior author Maurizio Corbetta, MD, the Norman J. Stupp Professor of Neurology. “A more complete and accurate description of the most common anatomical damage and deficits after a stroke will help us understand how the brain can adapt to recover lost functions and potentially lead to new rehabilitation strategies."
The results appear online March 4 in Neuron.
Neurologists’ traditional approach to stroke originated with Paul Broca, a French surgeon who in 1861 linked a stroke patient’s severe speech problems to damage to an area of the cortex, the outer layer of gray matter that wraps around the surface of the brain. The area Broca identified is underneath the left temple.
Since then, neurologists have continued in the tradition established by Broca and have associated different stroke-related problems to damage in particular areas of the cortex. That has led to the identification of a hodgepodge of dozens of different stroke-related syndromes that often are difficult to match precisely to an individual patient’s symptoms.
With the advent of modern brain scans, scientists later discovered that stroke only rarely affects the cortex but often involves the tissue underneath the cortex, which is primarily composed of the fibers connecting different parts of the brain. In 2007, for example, a team used MRI to image the brain of Broca’s first patient and found the stroke had caused significant damage to the white matter.
To get a better sense of how stroke damages the brain, Corbetta and his colleagues initiated a study of patients who had just suffered first-time strokes. The new study uses data gathered from 132 patients treated at Barnes-Jewish Hospital.
In every subject, the researchers used MRI scans of the brain to assess the extent and location of stroke damage. They also measured structural connectivity the connections in the white matter; and functional connectivity the ability of brain regions to communicate with each other in a coordinated fashion. They also examined attention, vision, movement, language and memory, which often are impaired by stroke. These evaluations occurred one to two weeks, three months and one year after each patient’s stroke.
The results show that stroke is more likely to inflict the most harm in three areas of the brain, all under the cortex: the white matter; the basal ganglia, which are important in movement and reward; and the thalamus, which regulates sleep and consciousness, and plays roles in vision, hearing and touch.

The researchers also found that deficits after stroke are better described by three groupings rather than by many individual deficits. The first group was associated with problems with language and memory; the second was linked to problems with vision, left body movement, general attention and awareness of the left side of space; and the third was linked to problems with right body movement and awareness of the right side of space.

The combination of deficits across many patients was not due to the extent of damage caused by the strokes but to damage of white matter “crossroads,” regions with fibers that have many connections. According to Corbetta, these lesions affect communication across many brain regions, which helps explain why the damage they produce causes such a diverse array of symptoms.
“The majority of research in stroke, including funding at the National Institute of Health, has focused on the cortex," Corbetta said. "Our results show the importance of loss of connections due to white matter damage, and highlight the need to look at the impact of stroke on the ability of undamaged brain regions to communicate. Future studies should focus on how the stroke affects brain function. This should be very helpful in diagnosis and treatment of these patients.”

The research was supported by funding from the National Institutes of Health (NIH), grant numbers R01 HD061117-05, 5T32GM007200-40, and R01 HD068290-03; and the American Heart Association, 14PRE19610010.

Corbetta M, Ramsey L, Callejas A, Baldassarre A, Hacker CD, Siegel JS, Astafiev SV, Rengachary J, Zinn K, Lang CE, Connor LT, Fucetola R, Strube M, Carter AR, Shulman GL. Common behavioral clusters and subcortical anatomy in stroke. Neuron, online March 4, 2015.

1 comment:

  1. I blame the National Institute of Health for funding a stupid project just because the researchers are doctors (MDs).

    ReplyDelete