Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, July 18, 2016

Computer-Based Cognitive Training for Executive Functions after Stroke: A Systematic Review

Maybe your doctor can reuse this and create a stroke protocol out of this for your cognitive training. Not to be done on your own, that would be dangerous for your doctor when you realize the incompetency of the stroke world out there.


Computer-Based Cognitive Training for Executive Functions after Stroke: A Systematic Review

  • 1Department of Psychology, Brain and Cognition, University of Amsterdam, Amsterdam, Netherlands
  • 2Department of Psychiatry, VU University Medical Center, Amsterdam, Netherlands
  • 3Department of Medical Psychology, Academic Medical Centre, University of Amsterdam, Netherlands
Background: Stroke commonly results in cognitive impairments in working memory, attention, and executive function, which may be restored with appropriate training programs. Our aim was to systematically review the evidence for computer-based cognitive training of executive dysfunctions.
Methods: Studies were included if they concerned adults who had suffered stroke or other types of acquired brain injury, if the intervention was computer training of executive functions, and if the outcome was related to executive functioning. We searched in MEDLINE, PsycINFO, Web of Science, and The Cochrane Library. Study quality was evaluated based on the CONSORT Statement. Treatment effect was evaluated based on differences compared to pre-treatment and/or to a control group.
Results: Twenty studies were included. Two were randomized controlled trials that used an active control group. The other studies included multiple baselines, a passive control group, or were uncontrolled. Improvements were observed in tasks similar to the training (near transfer) and in tasks dissimilar to the training (far transfer). However, these effects were not larger in trained than in active control groups. Two studies evaluated neural effects and found changes in both functional and structural connectivity. Most studies suffered from methodological limitations (e.g., lack of an active control group and no adjustment for multiple testing) hampering differentiation of training effects from spontaneous recovery, retest effects, and placebo effects.
Conclusions: The positive findings of most studies, including neural changes, warrant continuation of research in this field, but only if its methodological limitations are addressed.

Introduction

Stroke, resulting from brain hemorrhage or infarction, commonly results in cognitive impairments such as aphasia, neglect, reduced processing speed, impaired attention, and executive dysfunction (e.g., Cumming et al., 2013). Even though cognition can improve during the first year after stroke (Desmond et al., 1996; Tham et al., 2002; del Ser et al., 2005), cognitive impairment frequently persists long after. More than 60% of stroke survivors still reported mild to severe cognitive impairment up to 10 years after stroke (Maaijwee et al., 2014; Middleton et al., 2014). Furthermore, cognitive impairments continue to deteriorate in 11% of stroke survivors during the first year after stroke (Tham et al., 2002). Therefore, rehabilitation efforts to ameliorate these cognitive impairments are essential.
Guidelines for neurorehabilitation are mainly focused on compensational strategy training (Cicerone et al., 2011). These strategies do not aim to restore brain functions (i.e., restitution), but aim to compensate for the lost function by using remaining intact functions. In this approach, residual plasticity of the brain throughout adulthood, which may enable restitution of the impaired function, is ignored (e.g., Kelly et al., 2006; Takeuchi and Izumi, 2015).
Robertson and Murre (1999) postulated that depending on the amount of remaining connectivity, different types of intervention are needed, notably restitution or compensation. Mildly damaged brain networks might reconnect by everyday life activities, and no special intervention is necessary. Severely affected brain networks may not be able to reconnect at all. Therefore, in severe cases compensational interventions are required that make use of preserved networks. For moderately affected networks, restitution-based interventions may be needed to stimulate the relevant parts of the impaired network.
Restitution focused treatments commonly consist of massed frequent repetition or stimulation of the affected function (Hamzei et al., 2006). They have proven to be effective in the domains of language, motor function, and vision (e.g., Kurland et al., 2010; Thrane et al., 2014). For other cognitive domains, such as attention and executive function, restitution training may consist of, for example, training reaction speed. Conversely, compensation interventions may consist of, for example, time management training to teach the patient to take more time for task execution. One type of restitution-based interventions use computer tasks aimed at training of damaged networks.
To date it is not yet clear whether restitution-based computer training can improve attention, working memory, and executive functions. In healthy adults, training effects have been contradictory (e.g., Owen et al., 2010; Anguera et al., 2013; Corbett et al., 2015), but a recent meta-analysis concluded that cognition can be improved (Toril et al., 2014). A systematic review of 10 studies in stroke patients concluded that restitution- and compensation-based interventions improved executive functions (Poulin et al., 2012). Even though the review by Poulin et al. did not only focus on restitution-based computerized training programs, their review does provide ground to further evaluate these restitution-based training programs.
This systematic review provides an overview of the evidence concerning the effects of computer-based restitution rehabilitation after stroke and other acquired brain damage to restore executive functioning. The term executive function includes a spectrum of cognitive functions, all revolving around control of one's behavior. This includes mental set shifting (i.e., changing from one set of task rules to another), information updating, and inhibition of prepotent but inappropriate responses (Miyake et al., 2000). For this review we considered working memory and divided (or selective) attention as part of the executive domain. Training programs that only focused on vigilance, tonic alertness, and sustained attention without any divided or selective attention tasks were not included.

More at link

No comments:

Post a Comment