Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Thursday, July 28, 2016

Study shows motor cortices encode error signals that drive adaptation in reaching

I'm sure your doctor won't update your stroke reaching protocol based on this science, probably because your doctor doesn't read and apply research to their practice. You are going to have to interpret this and update your own protocol. You are completely on your own.
http://www.news-medical.net/news/20160722/Study-shows-motor-cortices-encode-error-signals-that-drive-adaptation-in-reaching.aspx
Adaptation in reaching -- gradual improvement of motor control in response to a perturbation -- is a central issue in motor neuroscience.However, even the cortical origin of errors that drive adaptation has remained elusive. In a new paper published in Neuron, Inoue, Uchimura and Kitazawa have shown that error signals encoded by motor cortical neurons drive adaptation in reaching.
  • The premotor and primary motor cortices encoded visual error in reaching.
  • Stimulation to the motor cortices induced trial-by-trial increases in reach errors.
  • The error increased opposite to the preferred direction of errors at each location.
  • The after-effect of stimulation subsided gradually as in ordinary adaptation.
The neural mechanisms of motor learning and adaptation constitute a central issue in both basic and clinical neuroscience. However, it is surprising that very little is known about the neural mechanisms underlying the motor learning and adaptation of voluntary arm movements. For example, the origin of cortical error signals that drive adaptation in reaching remains an unanswered question. A major theory in motor learning (feedback error learning) proposed by Kawato and Gomi (1992) hypothesized that error signals are provided by premotor circuits, including the motor cortical circuits. However, neuroimaging studies to date have not indicated whether motor cortices encode error signals. Preceding human imaging studies unanimously implicated parietal regions, such as areas 2, 5 and 7, in representing reaching errors.
In the current study, Inoue and colleagues were successful for the first time in inducing trial-by-trial "adaptation" in voluntary arm movements by artificial electrical stimulation of the premotor cortex (PM) or the primary motor cortex (M1). When the stimulation was terminated, the error (after-effect) did not decrease at once but recovered with practice, as observed after typical adaptation. The direction of the increase in the error was opposite to the "preferred" error direction of the neuron recorded in the stimulation site. The results clearly show that the motor cortices submit error signals that drive adaptation in voluntary arm movements, as predicted by the feedback error learning scheme.
The novel technique to artificially "improve" a motor skill by a small amount of stimulation would be applicable to performance enhancement in athletes as well as for restoring motor control in neurological patients.
Source:
Osaka University


No comments:

Post a Comment