Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, July 13, 2016

Eye-Movement Training Results in Changes in qEEG and NIH Stroke Scale in Subjects Suffering from Acute Middle Cerebral Artery Ischemic Stroke: A Randomized Control Trial

You'll have to ask your doctor what exactly is eye-movement training. Does it work? Who on staff is trained in it? What is the stroke protocol like?
http://journal.frontiersin.org/article/10.3389/fneur.2016.00003/full?
imageFrederick Robert Carrick1,2,3,4*, imageElena Oggero1,5, imageGuido Pagnacco1,5, imageCameron H. G. Wright1,5, imageCalixto Machado1,3, imageGenco Estrada3, imageAlejandro Pando3, imageJuan C. Cossio3 and imageCarlos Beltrán3
  • 1Neurology, Carrick Institute, Cape Canaveral, FL, USA
  • 2Global Clinical Scholars Research Training Program (GCSRT), Harvard Medical School, Boston, MA, USA
  • 3Institute of Neurology and Neurosurgery, Havana, Cuba
  • 4Bedfordshire Centre for Mental Health Research, University of Cambridge, Cambridge, UK
  • 5Electrical and Computer Engineering, University of Wyoming, Laramie, WY, USA
Context: Eye-movement training (EMT) can induce altered brain activation and change the functionality of saccades with changes of the brain in general.
Objective: To determine if EMT would result in changes in quantitative electroencephalogram (qEEG) and NIH Stroke Scale (NIHSS) in patients suffering from acute middle cerebral artery (MCA) infarction. Our hypothesis is that there would be positive changes in qEEG and NIHSS after EMT in patients suffering from acute MCA ischemic stroke.
Design: Double-blind randomized controlled trial.
Setting and participants: Thirty-four subjects with acute MCA ischemic stroke treated at university affiliated hospital intensive care unit.
Interventions: Subjects were randomized into a “control” group treated only with aspirin (125 mg/day) and a “treatment” group treated with aspirin (125 mg/day) and a subject-specific EMT.
Main outcome measures: Delta–alpha ratio, power ratio index, and the brain symmetry index calculated by qEEG and NIHSS.
Results: There was strong statistical and substantive significant improvement in all outcome measures for the group of stroke patients undergoing EMT. Such improvement was not observed for the “control” group, and there were no adverse effects.
Conclusion: The addition of EMT to a MCA ischemic stroke treatment paradigm has demonstrated statistically significant changes in outcome measures and is a low cost, safe, and effective complement to standard treatment.

Introduction

Stroke is one of the leading causes of death in the United States and is a major cause of adult disability; although from 2001 to 2011 the relative rate of stroke death fell by 35.1% and the actual number of stroke deaths declined by 21.2%, the number of persons suffering from a stroke is still significant (≈795,000 each year in the United States alone) and its consequences are serious (in 2011, stroke caused ≈1 of every 20 deaths in the United States) (1). Its etiology is a change in blood flow to a specific area of the brain due to ischemia or hemorrhage, and it is usually manifested as brain dysfunction with consequent effects such as hemiparesis, dysphasia, ataxia, diplopia, or visual field loss. Strokes are diagnosed by physical and neurological examination, with the help of neurological scales specifically developed to quantify the impairment caused by a stroke, in particular the NIH Stroke Scale (NIHSS). This scale originally consisted of a 15-item examination (2), then amended to an 11-item examination (3), scored on a scale from 0 to 2, 3, or 4 depending on the item, for a total score ranging from 0 (normal function) to 42 (severe stroke). Several studies have reported that the baseline NIHSS (taken at hospitalization/diagnosis time) is a good predictor of outcome after a stroke (47). Diagnostic tools for strokes include CT scans (with or without contrast), MRI scans (especially diffusion-weighted imaging – DWI, and with magnetic resonance angiography – MRA), Doppler ultrasound, and digital subtraction angiography. In particular, for ischemic stroke, MRI scans have shown a higher sensitivity and specificity than CT scans without contrast (8). Once patients are hospitalized, electroencephalograms (EEG) are used to continuously monitor their brain function as well as to drive clinical management, since EEG abnormalities are typical manifestation of an ischemic stroke. In particular, quantitative electroencephalogram (qEEG) (9) has been used for monitoring and formulating prognosis in acute and sub-acute ischemic stroke (10). Of all the numerical parameters that can be obtained from the qEEG, of particular interest are the ratio of mean scalp delta to alpha power [known as the alpha delta ratio (ADR), or its inverse the delta alpha ratio (DAR)] (11, 12), the power ratio index (PRI) of mean “slow” (delta and theta) to mean “fast” (alpha and beta) activity (1214), and the brain symmetry index (BSI or mBSI) (15, 16).
Standard treatment plans for patients affected by ischemic stroke involve fibrinolytic therapy (administration of recombinant tissue-type plasminogen activator – rt-PA), antiplatelet agents (such as aspirin), and mechanical thrombectomy (removal of the clot causing the blood flow obstruction). After the acute phase is concluded, the most effective rehabilitation programs involve carefully directed, well-focused, repetitive practice to relearn skills that are lost when part of the brain is damaged.
Saccades are fast eye movements that allow humans to voluntarily very quickly change the direction of gaze. Extensive studies have been conducted to characterize the different brain and eye mechanisms generating such movements and how different pathologies affect them (17). A number of standard parameters have been used to characterize saccades: latency or reaction time (the time it takes for the eyes to start moving once a stimulus is presented), velocity (at how many deg/s the eyes move), amplitude (how many degrees the eyes move), and duration (how much time it takes) (18). All of these eye movements can be quantified with diagnostic equipment, such as video-nystagmography (VNG), but they can be observed at the bedside as well. Standardized objective examination of eye movements is of great value in the detection and clarification of sub-clinical lesions in the central nervous system. Even patients with multiple sclerosis (MS) with lesions beyond the primary visual pathway have both saccadic latency and smooth pursuit abnormalities of oculomotor dysfunction (19). Patients suffering from mild closed-head injury also demonstrate prolonged saccadic latencies, and quantitative tests of oculomotor function may provide sensitive markers of cerebral dysfunction (20) that can assist and direct patient assessment. For instance, a cerebral vascular lesion in the right and/or left hemisphere produces a general slowing in the saccadic latency and a general reduction in the accuracy of saccades with respect to a healthy subject’s performance (21). Abnormalities in the control of saccades have been described in patients with cerebral pathology (22), suggesting that they might be robust biomarkers that could be utilized in guiding and interpreting treatment outcomes. Discrepancy in horizontal and vertical tilt angle coefficients can cause eye positions to lie on a twisted rather than a planar surface, resulting in eye velocities that change during a visual saccade (23). The coordination of eye movements is dependent upon the non-linear addition of visual saccades and the pursuit components of catch-up saccades that can be measured to assess function and disability (24). There are many variables that can result in different clinical scenarios for patients with similar disease states or injuries. For example, elderly patients demonstrate an increased latency and decreased peak velocity from age-related degenerative changes in the central nervous system with diseases of the central nervous system often causing saccadic disorders (25). Different disease states and sites of neurological injury may affect one component of a visual task while not affecting another. Alzheimer’s patients show increased latency to initiation of saccades but no difference in their amplitude and velocity when compared to healthy controls (26). We have observed slowing of visual saccades and saccadic intrusions of visual pursuits in patients with acute middle cerebral artery (MCA) infarction. Abnormal saccadic intrusions consisting of frequent sporadic horizontal square wave jerks occur in a large percentage of patients with acute or chronic focal cerebral lesions (27). Low-amplitude cerebral square wave jerks can be detected clinically by fundoscopy at the bedside. Reflexive visually guided saccade triggering may be facilitated or inhibited by the cerebral cortex. Pierrot-Deseilligny and colleagues observed pathology of saccades made toward and away from suddenly appearing visual targets in patients with limited unilateral cerebral infarction (28). Different phenomenology of eye movements have been observed with lesions of both the right and left cerebral hemisphers. For example, ischemic lesions of the left frontal eye field (FEF) have been associated with abnormal reflexive visually guided saccades (gap and overlap tasks), antisaccades, predictive saccades, memory-guided saccades, smooth pursuit, and optokinetic nystagmus (29). Eye-movement analysis not only identifies functional lesions but can also act as a biomarker for treatment outcomes. Hemispatial neglect affects the ability to explore space on the side opposite a brain lesion that is also mirrored in abnormal saccadic eye-movement patterns that provide a sensitive means to assess the extent of neglect recovery (30). Russell and colleagues provided the first evidence for a deficit in remapping visual information across saccades underlying right-hemisphere constructional apraxia (RHCA) (31). RHCA is a common disorder after right parietal stroke, often persisting after initial problems such as visuospatial neglect have resolved. Concurrent saccade programing is bilaterally impaired with extensive right cerebral damage with an inability to produce a corrective saccade within 100 ms after the end of a primary saccade (32). Visual field defects after striate lesions are associated with changes in the frontoparietal network underlying the cortical control of saccades, but may improve search strategies with appropriate training of saccades (33). Nelles and colleagues used functional magnetic resonance imaging (fMRI) to study the effects of eye-movement training (EMT) on cortical control of saccades (34). EMT induced altered brain activation in the striate and extrastriate cortex as well as in oculomotor areas and a relative decrease of activation in the left FEF. The cerebellum plays a major role in saccadic adaptation representing a well-established model of ­sensory–motor plasticity (35). The cerebellum remains intact after MCA infarction, while the intraparietal sulcus may be the neural substrate for remapping of the visual environment by saccadic training (36). But saccade training may not be enough in EMT as repetitive contralesional smooth visual pursuit training has been shown to induce superior, multimodal therapeutic effects in mild and severe chronic stroke patients with neglect syndrome (37).
Exploratory findings suggest that measurements of saccades, smooth pursuit, and vergence are useful in detecting changes associated with mild traumatic brain injuries (38), and it is reasonable to utilize them in other brain syndromes, including stroke. EMT has been used with vestibular rehabilitation in the successful treatment of Post-Traumatic Stress Disorder (PTSD) in combat veterans after traumatic brain injury (3941). Dong and colleagues evaluated the sensitivity of measuring cognitive processing in the ocular motor system as a marker for recovery of deficit in post-stroke patients (42). They tested ocular motor function and compared outcomes in the NIHSS score, modified Rankin Scale (mRS), and standard cognitive function assessments. Ocular motor function was more sensitive in identifying cognitive dysfunction and improvement compared with NIHSS or mRS. They concluded that ocular motor assessment demonstrates cognitive effects of even mild stroke and may provide improved quantifiable measurements of cognitive recovery post-stroke. We desired to see if EMT might be beneficial in the treatment of acute MCA infarction and hypothesized that it would result in positive changes of qEEG and NIHSS.

More at link.

No comments:

Post a Comment