Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, August 25, 2016

Elevating brain protein allays symptoms of Alzheimer's and improves memory

How closely is your doctor following this? You likely will need this whenever it becomes available.
1. A documented 33% dementia chance post-stroke from an Australian study?   May 2012.
2. Then this study came out and seems to have a
range from 17-66%. December 2013.
3. A
20% chance in this research.   July 2013..

It seems that 4 years ago research suggested using neuregulin-1 as a hyperacute therapy, but I bet we never got human trials going. Failure once again.

Extended therapeutic window and functional recovery after intraarterial administration of neuregulin-1 after focal ischemic stroke Nov. 2012

   

Elevating brain protein allays symptoms of Alzheimer's and improves memory


Boosting levels of a specific protein in the brain alleviates hallmark features of Alzheimer's disease in a mouse model of the disorder, according to new research published online August 25, 2016 in Scientific Reports.
The , called neuregulin-1, has many forms and functions across the brain and is already a potential target for brain disorders such as Parkinson's disease, and schizophrenia.
"Neuregulin-1 has broad therapeutic potential, but mechanistically, we are still learning about how it works," says the study's senior investigator Kuo-Fen Lee, a professor in the Salk Institute's Clayton Foundation Laboratories for Peptide Biology and holder of the Helen McLoraine Chair in Molecular Neurobiology. "We've shown that it promotes metabolism of the brain plaques that are characteristic of Alzheimer's disease."
Previously, researchers have shown that treating cells with neuregulin-1, for example, dampens levels of , a molecule that generates amyloid beta, which aggregate and form plaques in the brains of Alzheimer's patients. Other studies suggest that neuregulin-1 could protect neurons from damage caused by blockage of blood flow.
In the new study, Lee's team tested this idea in a mouse model of Alzheimer's disease by raising the levels of one of two forms of neuregulin-1 in the hippocampus, an area of the brain responsible for learning and memory. Both forms of the protein seemed to improve performance on a test of spatial memory in the models.
What's more, the levels of cellular markers of disease—including the levels of amyloid beta and plaques—were noticeably lower in mice with more neuregulin-1 compared to controls.
The group's experiments suggest that neuregulin-1 breaks up plaques by raising levels of an enzyme called neprilysin, shown to degrade . But that is probably not the only route through which neuregulin-1 confers its benefits, and the group is exploring other possible mechanisms—such as whether the protein improves signaling between neurons, which is impaired in Alzheimer's—says the study's first author Jiqing Xu, a research associate in Lee's group.
A neuregulin-1 treatment is not available on the market, though it is being explored in clinical trials as a potential treatment for and Parkinson's disease. One advantage of neuregulin-1 as a potential drug is that it can cross the blood brain barrier, which means that it could be administered relatively noninvasively even though the efficiency is not clear. On the other hand, other research suggests too much of the protein impairs function. Working with chemists at Salk, Lee's team has come up with a small molecule that can raise levels of existing neuregulin-1 (rather than administering it directly) and are testing it in cells. This alternative therapy could be a better way to prevent plaques from forming because small molecules more readily cross the .
The group is also interested in neuregulin-1 for its ties to schizophrenia. An alteration in the neuregulin-1 gene—a single change in one letter of the DNA code for the protein—has been found in families with schizophrenia and linked to late-onset Alzheimer's disease with psychosis. The protein may be a way to understand the overlap between Alzheimer's and other , Lee says.
An important caveat is that the new research was conducted in a single type of of Alzheimer's. Lee's group is testing neuregulin-1's affects across other models. "There's much more work ahead before neuregulin-1 could become a treatment, but we are excited about its potential, possibly in combination with other therapeutics for Alzheimer's disease," Lee says.
Journal reference: Scientific Reports search and more info website
Provided by: Salk Institute search and more info website

No comments:

Post a Comment