Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:

Monday, March 6, 2017

Microwave Imaging for Brain Stroke Detection and Monitoring using High Performance Computing

This would seem to be much better than putting CT scanners in ambulances. But I bet followup will take decades since we have NO stroke leadership pushing for useful research to get done.  In 94 seconds for a diagnosis we could get to negative door-to-needle time. Who is going to put that as a goal for their stroke department?
by Pierre-Henri Tournier
Microwave tomography is a novel imaging modality holding great promise for medical applications and in particular for brain stroke diagnosis. We demonstrated on synthetic data the feasibility of a microwave imaging technique for the characterisation and monitoring of strokes. Using high performance computing, we are able to obtain a tomographic reconstruction of the brain in less than two minutes.
Stroke, or cerebrovascular accident (CVA), is classically characterised as a neurological deficit attributed to an acute focal injury of the central nervous system by a vascular cause, and is a major cause of disability and death worldwide. About 85% of CVAs are ischemic due to cerebral infarction, caused by an interruption of the blood supply to some part of the brain, and 15% are haemorrhagic. Differentiating between ischemic and haemorrhagic CVAs is an essential part of the initial workup of the patient, and rapid and accurate diagnosis is crucial for patient survival; here, neuroimaging plays a vital role. Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) are the ‘gold’ standards, but their use is not well suited to efficient medical care of CVAS, as they are bulky diagnostic instruments and cannot be used in continuous brain monitoring. A non-invasive and transportable/portable device for the characterisation and monitoring of CVAs would have clear clinical applications, beginning with the very first instance of patient care in an ambulance and extending to continuous patient monitoring at the hospital.
Microwave tomography is a novel imaging modality with a large number of potential attractive medical applications, and is based on the difference between the dielectric properties of normal and diseased brain tissues. Microwave tomography features rapid data acquisition time, and together with rapid tomographic reconstructions allows detecting, identifying and monitoring CVA continuously (head tissues are exposed to low-level microwave incident field).
From a computational point of view, microwave imaging requires the solution of an inverse problem based on a minimisation algorithm. Reconstruction algorithms are computationally intensive with successive solutions of the forward problem needing efficient numerical modelling and high-performance parallel computing. The raw data acquired by the microwave imaging system can be wirelessly transferred to a remote computing center, where the tomographic images will be computed. The images can then be quickly transferred to the hospital (see Figure 1). This methodology involves distinct research fields: optimisation, inverse problems, approximation and solution methods for the simulation of the forward problem modelled by Maxwell’s equations. The latter is challenging in itself as the modelling must accurately take account of the high heterogeneity and complexity of the different head tissues.
Figure 1: Principle of microwave imaging. Image courtesy of EMTensor.
Figure 1: Principle of microwave imaging. Image courtesy of EMTensor.
Our work demonstrates on synthetic data the feasibility of a microwave imaging technique for the characterisation of CVAs, and won our research team the Bull-Joseph Fourier Prize in 2015. The numerical framework is based on high-performance computing open-source tools developed by our research team: the HPDDM library [1] (L1) is an efficient parallel implementation of Domain Decomposition Methods (DDM) and is interfaced with the finite element software FreeFem++[2](L2). Our work was carried out in collaboration with EMTensor, an Austrian innovative SME dedicated to biomedical imaging and is based on their BRain IMaging Generation1 (BRIMG1) prototype [3]. EMTensor™’s experimental system consists of an electromagnetic reverberating chamber surrounded by 160 antennas, able to work alternately as emitters or receivers (see Figure 2). The measurements are gathered in the scattering matrix, which is the input of the reconstruction algorithm. We first validated the forward problem by comparing the experimental data with the simulation.

We then created synthetic data corresponding to an accurate numerical model of a human head with a simulated haemorrhagic CVA as input for the inverse problem.  We designed and tested our inversion algorithm for monitoring the evolution of the CVA, using synthetic data corrupted with 10% white Gaussian noise. Our scalable algorithm uses multiple levels of parallelism, which allows us to reconstruct an image of the brain in 94 seconds using 4,096 cores. Figure 3 shows the reconstructed images for three evolution steps of the haemorrhagic CVA. The reconstruction time, which can be further refined, already fits the physicians’ objective to obtain an image every fifteen minutes for efficient monitoring.

No comments:

Post a Comment