Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, March 14, 2017

Visual effects and rehabilitation after stroke

You will notice that none of the treatment options have the doctor doing one damn thing. Adaptation, not cure. You are on your own. 
http://journal.www.cehjournal.org/article/visual-effects-and-rehabilitation-after-stroke-2/
trokes, or cerebrovascular accidents (CVA) are common, particularly in older people. The problems of motor function and speech are well known. This article explains the common visual problems which can occur with a stroke and gives information about diagnosis and management.

What is a stroke?

A stroke occurs when there is an interruption to blood flow to the brain either because of a blood clot blocking the blood vessel or a haemorrhage in the brain.1 Strokes can cause signs which are obvious, such as loss of speech, drooping of one side of their face, or weakness or paralysis of the arm and/or leg on one side of the body.1 The vision is affected in about two thirds of people who have had a stroke, but this is often not obvious to the patient or their carers. For example, someone who has weakness down one side may bump into things or not eat all the food on their plate, not realising that this may also be because they have visual field loss.2

What causes a stroke?

A stroke or cerebrovascular accident, (CVA) is the result of a blocked blood vessel in the brain (thrombosis or embolus), or haemorrhage into the brain.1 Strokes are more likely in the elderly, and those who have high blood pressure, diabetes or cardiovascular disease.

Types of visual loss in people who have had a stroke

There are four ways in which vision can be affected following a stroke:
  1. Loss of central vision
  2. Visual field loss
  3. Visual perceptual abnormalities
  4. Eye movement abnormalities
These may occur in isolation but more frequently occur in combination.3 Problems with central vision are quite common after a stroke. The symptoms include blurred or altered vision. In many the vision improves, but the visual loss can be permanent.
Visual field loss occurs in up to half of people with a stroke, with the commonest defect being homonymous hemianopia in which vision is lost in the right or the left visual fields (Figure 1).4 Patients may not be aware of this, and bump into door frames or trip over things on the affected side. Reading can also be difficult (Figure 2).

Image showing loss of field of vision in both eyes
Figure 1. Right homonymous hemianopia: the right-hand field of view is lost in both eyes
Image illustrating how a page of text appears to someone with double vision and someone with right hemianopia
Figure 2. Impact of vertical double vision (central image) and right hemianopia (right image) on reading
Visual perceptual deficits are many and varied affecting about a third of people with a stroke. Problems that may develop include neglect one side of their body; difficulty recognising faces or objects, or difficulties with colour vision, depth perception and motion.5 Eye movement abnormalities can also be varied, including strabismus (misaligned eyes), difficulty in converging the eyes to look at near objects, or double vision due to the cranial nerves which control eye movement being affected.6 Typical symptoms include double vision, or jumbled, blurred and/or juddery vision (Figure 2).

Impact

Blurred vision, double vision and lossand loss of visual field are significant symptoms that impair daily functioning.7 The patient or their close relatives may report that they frequently bump into objects such as door frames; have difficulty finding things on surfaces; are unsure of their footing while walking and stumble; may leave food uneaten on one side of the plate and have difficulty with reading. Other impacts on the quality of life include loss of confidence, fear of falling, fear of going out alone, social isolation and loss of independence.8

How to assess visual function in someone who has had a stroke

Examination for visual loss is essential for stroke survivors.9 There are various assessment tools which can be used to examine visual function after a stroke:

Management

Treatment options aim to restore visual function to as normal as possible.10 For eye movement abnormalities,prisms and patching one eye can be effective in reducing double vision.6 For visual field loss a Cochrane systematic review reports favourable evidence of visual scanning training which aims to compensate for the visual field loss.11 It is available as a paper training option (www.strokevision.org.uk) or through computer training (www.eyesearch.ucl.ac.uk; www.readright.ucl.ac.uk.
Stroke survivors with persistent impairment of central vision may be helped by low vision services which can include magnifiers, reading aids, computerised adaptations and improved lighting.12 Furthermore, simple adaptations can be made by stroke survivors such as using large print, ensuring good lighting at home, putting labels or coloured stickers on cooking equipment, decluttering areas and having a companion when going out, particularly in busy, crowded places.10

Conclusion

Post-stroke difficulties in visual function are an under-recognised problem that cause significant impact to the quality of life of stroke survivors. Carers and health workers need to be aware that problems with vision are a common consequence of stroke that is not outwardly obvious. Assessment including visual functioning is best provided as part of a multi-disciplinary team on acute stroke units, or in neuro-rehabilitation units. A careful history about visual problems from the patient and carers followed by examination of visual acuity, eye movements and visual field are important in understanding the difficulties in visual functioning.
Management should be tailored to each individual, their visual difficulties and visual needs. With about one quarter of stroke survivors being of working age, rehabilitation in the conext of adaptation of the work place environment is vital if younger people are to return to work after stroke. Rehabilitation requires patience and perseverance on the side of the client, relatives and the health provider.
Despite improvement in stroke prevention and acute stroke management, the increasing ageing population will result in more stroke survivors requiring rehabilitation. Policy makers need to understand the importance of providing post-stroke rehabilitation services including visual functioning.

No comments:

Post a Comment