Deans' stroke musings

Changing stroke rehab and research worldwide now.Time is Brain!Just think of all the trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 493 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It's quite disgusting that this information is not available from every stroke association and doctors group.
My back ground story is here:http://oc1dean.blogspot.com/2010/11/my-background-story_8.html

Monday, March 13, 2017

Electrical stimulation of excitable tissue: design of efficacious and safe protocols

Does your therapist know the correct placement, power and duration when using tDCS or rTMS on you? Like maybe a protocol?
http://www.sciencedirect.com/science/article/pii/S0165027004003826

Abstract

The physical basis for electrical stimulation of excitable tissue, as used by electrophysiological researchers and clinicians in functional electrical stimulation, is presented with emphasis on the fundamental mechanisms of charge injection at the electrode/tissue interface. Faradaic and non-Faradaic charge transfer mechanisms are presented and contrasted. An electrical model of the electrode/tissue interface is given. The physical basis for the origin of electrode potentials is given. Various methods of controlling charge delivery during pulsing are presented. Electrochemical reversibility is discussed. Commonly used electrode materials and stimulation protocols are reviewed in terms of stimulation efficacy and safety. Principles of stimulation of excitable tissue are reviewed with emphasis on efficacy and safety. Mechanisms of damage to tissue and the electrode are reviewed.

Keywords

  • Efficacy;
  • Electrode;
  • Interface;
  • Protocol;
  • Safety;
  • Stimulation
Choose an option to locate/access this article:
Check if you have access through your login credentials or your institution
Check access

Corresponding author. Tel.: +1 801 585 0791; fax: +1 801 581 5151.

No comments:

Post a Comment