Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, March 15, 2017

Researchers Explore Multimodal Technology for Assessing Stroke Symptoms

Still looking at the effects of the stroke rather than the actual damage in the brain.  The same effect, not able to move arm could have 9 different causes. Don't tell me all of those causes would have the same treatment protocol.
1. Penumbra damage to the motor cortex.
2. Dead brain in the motor cortex.
3. Penumbra damage in the pre-motor cortex.
4. Dead brain in the pre-motor cortex.
5. Penumbra damage in the executive control area.
6. Dead brain in the executive control area.
7. Penumbra damage in the white matter underlying any of these three.
8. Dead brain in the white matter underlying any of these three.
9. Spasticity preventing movement from occurring. 
http://www.military-technologies.net/2017/03/15/researchers-explore-multimodal-technology-for-assessing-stroke-symptoms/
 CSE research assistant professor Nadir Weibel and CSE Ph.D. student Steven Rick are part of a small, interdisciplinary team that has been awarded a Frontier of Innovation Scholars Program (FISP) grant to pursue a sensor-based approach to multimodal stroke signature.
The so-called Stroke-Kinect team includes colleagues in engineering, computer science and the UC San Diego School of Medicine. Led by CSE’s Weibel — who is also a member of the Design Lab located in the Qualcomm Institute — the project was awarded $50,000, all of which will fund CSE’s Rick and Ph.D. student Vishwajith (Vish) Ramesh in the Department of Bioengineering while they are working over the next year on the technology.
It was one of more than 400 high-caliber proposals submitted as part of this year’s FISP grant solicitation by the university.
Caption
CSE’s Steven Rick and Bioengineering’s Vish Ramesh both work in Weibel’s Human-Centered and Ubiquitous Computing Lab. Rick is also a member of the Design Lab’s Human Centered Healthcare team. He did his undergraduate work at UC San Diego in Cognitive Science (B.S. ’13) before switching to CSE. Currently his research focuses on computational ethnography — the augmentation of human observational research with insight from unobtrusive and ubiquitous sensing. In the Design Lab, located on the first floor of Atkinson Hall, Rick helps apply a mix of methodologies toward the generation of better human understanding of health and healthcare coordination. Rick expects to complete his Ph.D. in 2020.
Vish Ramesh
Stroke-Kinect is a new approach to characterizing the severity of ischemic stroke. The system exploits cutting-edge pervasive sensing technologies that unobtrusively capture body motion, eye tracking, and speech. The goal is to use all of these modes of communication and sensing — hence ‚multimodal’ — to understand the dynamics of human behavior and automatically assess clinical deficit scales more frequently and precisely than current human resources allow.
Team members aim to remove the subjectivity of human analysis in characterizing ischemic stroke, and to do so by allowing a more accurate quantification of specific behavioral patterns in individuals who have undergone a stroke. Another benefit of the system will be to enable rapid observation-diagnosis feedback loops by informing clinicians of patient deficits in real time. Weibel and his colleagues — including Bioengineering professor Gert Cauwenberghs and School of Medicine neuroscience professor Brett Meyer (a top expert on stroke) — will leverage campus expertise in neurology, stroke diagnosis and stroke rehabilitation. Stroke-Kinect will also collect and analyze multimodal data in the healthcare domain using pervasive sensing technologies, multi-year experience in neural computation and bioengineering, and via access to Meyer’s UCSD Stroke Clinic.

No comments:

Post a Comment