Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, March 8, 2017

MRI-Powered Mini-Robots Could Offer Targeted Treatment

Possible use to deliver tPA directly to the clot if we had ANY innovative thinkers in stroke at all.
http://www.rdmag.com/news/2017/03/mri-powered-mini-robots-could-offer-targeted-treatment?
Tue, 03/07/2017 - 12:44pm
by University of Houston
Aaron Becker, assistant professor of electrical and computer engineering at the University of Houston, is leading a project to develop millimeter-sized robots that can deliver drugs and other medical interventions noninvasively. Source: University of Houston
Invasive surgical techniques - cutting through the breastbone for open heart surgery or making a large incision to inspect an abdominal tumor - allow physicians to effectively treat disease but can lead to sometimes serious complications and dramatically slow healing for the patient.
Scientists instead want to deploy dozens, or even thousands of tiny robots to travel the body's venous system as they deliver drugs or a self-assembled interventional tool. Researchers from the University of Houston and Houston Methodist Hospital are developing control algorithms, imaging technology, ultrafast computational methods and human-machine immersion methods to harness the force from a magnetic resonance imaging (MRI) scanner to both image and steer millimeter-sized robots through the body.
"We want to move from science fiction to science feasibility," said Aaron Becker, assistant professor of electrical and computer engineering at UH and principal investigator for a $608,000 Synergy Award from the National Science Foundation to develop prototypes for testing.
To tackle this unprecedented challenge, the award involves two additional investigators: Nikolaos Tsekos, associate professor of computer science and director of the Medical Robotics Laboratory at UH, who has expertise in MRI and computational methods, and Dipan J. Shah, a cardiologist and director of cardiovascular MRI at Houston Methodist Hospital, who brings expertise in clinical MRI and focusing the effort to find solutions that are clinically necessary and valuable.
While MRI has traditionally been used for noninvasive diagnosis, the next frontier is its use as a tool to offer noninvasive or minimally invasive treatment.
The milli-robot development and control work is an outgrowth of Becker's previous research, which was funded in part with an NSF CAREER award and demonstrated the theory behind the proposal. This grant, awarded through NSF's Cyber-Physical Systems (CPS) program, will fund work to build a prototype suitable for animal testing. The MRI control and computational methods follow a previous CPS award in image-guided robotic surgeries led by Tsekos and Shah.
Their current models are up to two centimeters; Becker said the goal is robots that range from 0.5 millimeters to two millimeters. The average human hair, in comparison, is about 0.08 millimeters wide.
MRI provides enough magnetic force to steer the robots through the body's blood vessels but can't penetrate tumors or other tissue. This project is working with two designs, both powered by the MRI scanner, to address that problem, one based on the principle of mechanical resonance and the second modeled after a self-assembling surgical tool, a Gauss gun.
A key issue is real-time control, Becker said, noting that blood vessels move around in the body, making it crucial to be able to see both the anatomy and the robot as it moves in order to keep it moving correctly. Even the fastest current MRI scans are too slow for such control and have a time lag before the information is available. Developing such a system is a multidisciplinary task that must seamlessly integrate sensing with the MRI scanner, milli-robot control and close the loop by controlling the scanner to drive the milli-robots.
Ultimately, Becker said, the goal is to use the power of an MRI to steer large numbers of robots throughout the body. While one milli-robot could target a single lesion, delivering chemotherapy or another intervention, that isn't practical for a late-stage cancer, for example.
"Targeting delivery with dozens of microsurgeons is my goal," he said. In this case, those "microsurgeons" would be robots, guided by a physician.

No comments:

Post a Comment