Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, November 17, 2017

Restoring Motor Functions After Stroke: Multiple Approaches and Opportunities

What a complete waste of time. This type of review should not be necessary since they are continuously updated in that stroke protocol database so these reviews never need to be done. And proposing biomarkers to predict recovery is the height of fucking laziness. They should be solving all these problems in stroke rather than looking at what is currently possible(Only 10% full recovery).
http://journals.sagepub.com/doi/abs/10.1177/1073858417737486


More than 1.5 million people suffer a stroke in Europe per year and more than 70% of stroke survivors experience limited functional recovery of their upper limb, resulting in diminished quality of life. Therefore, interventions to address upper-limb impairment are a priority for stroke survivors and clinicians. While a significant body of evidence supports the use of conventional treatments, such as intensive motor training or constraint-induced movement therapy, the limited and heterogeneous improvements they allow are, for most patients, usually not sufficient to return to full autonomy. Various innovative neurorehabilitation strategies are emerging in order to enhance beneficial plasticity and improve motor recovery. Among them, robotic technologies, brain-computer interfaces, or noninvasive brain stimulation (NIBS) are showing encouraging results. These innovative interventions, such as NIBS, will only provide maximized effects, if the field moves away from the “one-fits all” approach toward a “patient-tailored” approach. After summarizing the most commonly used rehabilitation approaches, we will focus on NIBS and highlight the factors that limit its widespread use in clinical settings. Subsequently, we will propose potential biomarkers that might help to stratify stroke patients in order to identify the individualized optimal therapy. We will discuss future methodological developments, which could open new avenues for poststroke rehabilitation, toward more patient-tailored precision medicine approaches and pathophysiologically motivated strategies.

No comments:

Post a Comment