Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, March 3, 2021

A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting

But is it better than all these other games?

A usability study in patients with stroke using MERLIN, a robotic system based on serious games for upper limb rehabilitation in the home setting

Abstract

Background

Neuroscience and neurotechnology are transforming stroke rehabilitation. Robotic devices, in addition to telerehabilitation, are increasingly being used to train the upper limbs after stroke, and their use at home allows us to extend institutional rehabilitation by increasing and prolonging therapy. The aim of this study is to assess the usability of the MERLIN robotic system based on serious games for upper limb rehabilitation in people with stroke in the home environment.

Methods

9 participants with a stroke in three different stages of recovery (subacute, short-term chronic and long-term chronic) with impaired arm/hand function, were recruited to use the MERLIN system for 3 weeks: 1 week training at the Maimonides Biomedical Research Institute of Cordoba (IMIBIC), and 2 weeks at the patients’ homes. To evaluate usability, the System Usability Scale (SUS), Adapted Intrinsic Motivation Inventory (IMI), Quebec User Evaluation of Satisfaction with assistive Technology (QUEST), and the ArmAssist Usability Assessment Questionnaire were used in the post-intervention. Clinical outcomes for upper limb motor function were assessed pre- and post-intervention.

Results

9 patients participated in and completed the study. The usability assessment reported a high level of satisfaction: mean SUS score 71.94 % (SD = 16.38), mean QUEST scale 3.81 (SD = 0.38), and mean Adapted IMI score 6.12 (SD = 1.36). The results of the ArmAssist Questionnaire showed an average of 6 out of 7, which indicates that MERLIN is extremely intuitive, easy to learn and easy to use. Regarding clinical assessment, the Fugl-Meyer scores showed moderate improvements from pre- to post-intervention in the total score of motor function (p = 0.002). There were no significant changes in the Modified Ashworth scale outcomes (p = 0.169).

Conclusions

This usability study indicates that home-based rehabilitation for upper limbs with the MERLIN system is safe, useful, feasible and motivating. Telerehabilitation constitutes a major step forward in the use of intensive rehabilitation at home.

Trial registration ClinicalTrials.gov, NCT04405609. Registered 06 January 2020—Retrospectively registered, https://clinicaltrials.gov/ct2/show/NCT04405609

Background

Strokes are among the leading causes of death, physical disability and economic burden worldwide [1, 2]. The prevalence of people living with the effects of stroke has increased over the last few years, thus creating a higher demand for rehabilitation services [3]. The paralysis of the upper limbs is a common impairment after strokes, and only 10–20% of patients recover completely [4, 5]: for these patients, the main aim of arm rehabilitation is to recover lost functions [6]. Nowadays, the key aspects to make rehabilitation effective for people with stroke are considered to be intensity, repetition and using suitably challenging and function-oriented activities [7,8,9]. However, the increase in the number of people affected and the current limitation of health resources make it very difficult to provide services using a traditional approach.

Continuous advances in neuroscience and neurotechnology are transforming stroke rehabilitation [10]. At a time when the rehabilitation services resources are unable to meet the demand, robot-assisted rehabilitation and home-based telerehabilitation are gaining greater acceptance [11]. Robot-based neurorehabilitation systems provide a solution to increase the number of movements, involve safe, intensive rehabilitation exercises [12, 13] and have the advantage that the precise movements of the robot are able to measure the patients’ movements objectively [14, 15]. On the other hand, home-based telerehabilitation allows us to extend institutional rehabilitation by increasing and prolonging the therapy [16]. What is more, the combination of game-based telerehabilitation and robotic systems creates a motivating, engaging environment for patients [17]. The enjoyment patients derive from playing these so called ‘serious games’, designed specifically for the rehabilitation tasks, can greatly increase the quality and quantity of the therapy delivered [18].

MERLIN is a robotic system based on serious games for the upper limb tele rehabilitation in patients with a stroke. It is presented as an affordable and easy to use solution to allow the patient to carry out an intensive rehabilitation at home, with a continuous remote monitoring and communication with the therapist. The system is composed of an upper-limb rehabilitation robot and a software platform which guides and measures the patient’s movements and allows physicians to customize the therapeutic plan and to monitor the patients’ evolution.

The purpose of this manuscript is to present the usability validation of MERLIN system. In this study, we evaluate the ease to use, consistency and acceptance of the system have been evaluated. The research carried out also aims to demonstrate the feasibility of including the robotic therapy as a complement to a regular daily rehabilitation program.

 
 More at link.
 

No comments:

Post a Comment