Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, May 21, 2022

Individuals with Higher Levels of Physical Activity after Stroke Show Comparable Patterns of Myelin to Healthy Older Adults

Higher levels is not a scientific term, the mentors and senior researchers need remedial training in research in general.  Useless.

Individuals with Higher Levels of Physical Activity after Stroke Show Comparable Patterns of Myelin to Healthy Older Adults

First Published May 9, 2022 Research Article Find in PubMed 

Myelin asymmetry ratios (MARs) relate and contribute to motor impairment and function after stroke. Physical activity (PA) may induce myelin plasticity, potentially mitigating hemispheric myelin asymmetries that can occur after a stroke.

The aim of this study was to determine whether individuals with higher levels of PA showed lower MAR compared to individuals with lower levels of PA.

Myelin water fraction was obtained from 5 bilateral motor regions in 22 individuals with chronic stroke and 26 healthy older adults. Activity levels were quantified with wrist accelerometers worn for a period of 72 hours (3 days). Higher and lower PA levels were defined by a cluster analysis within each group.

MAR was similar regardless of PA level within the older adult group. Compared to the higher PA stroke group, lower PA stroke participants displayed greater MAR. There was no difference in MAR between the stroke and older adult higher PA groups. Within the lower PA groups, individuals with stroke showed greater MAR compared to the older adults. Arm impairment, lesion volume, age, time since stroke, and preferential arm use were not different between the PA stroke groups, suggesting that motor impairment severity and extent of brain damage did not drive differences in PA.

Individuals who have had a stroke and are also physically active display lower MAR (i.e., similar myelin in both hemispheres) in motor regions. High levels of PA may be neuroprotective and mitigate myelin asymmetries once a neurological insult, such as a stroke, occurs. Alternately, it is possible that promoting high levels of PA after a stroke may reduce myelin asymmetries.

Due to a reduction in mortality rates, there are an increasing number of individuals living with long-term disabilities post-stroke. Consequently, people with stroke have the highest need for rehabilitation among neurological disorders worldwide.1 Identifying effective interventions that optimize recovery of motor function represents an important challenge to improve quality of life after stroke.

Inducing myelin plasticity has become a viable therapeutic target for improving recovery after stroke.2,3 White matter plays a crucial role in the formation and function of neural circuits4,5 and undergoes use-dependent plasticity in young6,7 and older8 adults. However, following a stroke, there is considerable loss of myelin in both the contra- and ipsilesional hemispheres,9-11 which contributes to sensorimotor deficits.2,9,12 Specifically, myelin asymmetry ratios (MARs), calculated as a ratio of contralesional to ipsilesional myelin water fraction, in the posterior limb of the internal capsule are greater (e.g., >1 and therefore less symmetrical) in individuals who have had a stroke compared with older adults.11 Additionally, there is a negative relationship between MAR in the precentral gyrus9 and corticospinal tract13,14 and upper-extremity motor impairment. Approaches that target and reduce MAR may also improve function after stroke.

Physical activity (PA) induces white matter plasticity. In animal models, exercise increased myelin debris removal and enhanced remyelination in chronic cerebral hypoperfusion rats,15 and increased the rate of remyelination after a demyelinating injury.16 In older adults, there is a positive relationship between white matter structure in the fornix, temporal, and frontal brain regions and amount of PA.17,18 Further, aerobic exercise and resistance training increases white matter volume in the prefrontal cortex19 and decreases white matter lesion volume,20 respectively. Taken together, PA appears to be a promising, cost-effective approach to promote white matter plasticity in older adults. An open question, however, is whether individuals who are more physically active have more symmetrical MAR (i.e., values close to 1). Yet, PA is often obtained through self-report questionnaires, which are subjective and may not accurately reflect real-world activity.21

The current study investigated MAR (contralesional/ipsilesional or dominant/non-dominant hemispheres) from five motor regions of interest (ROIs) in low and high physically active individuals with chronic stroke (>6 months) and older adults. Physical activity levels were obtained using accelerometers which participants wore for 72 consecutive hours (3 days). We hypothesized that: (1) individuals with stroke would display greater MAR (i.e., >1) relative to older adults, and (2) individuals in the lower PA stroke group would display greater MAR in motor ROIs relative to individuals in the higher PA stroke group as well as the older adult group.

 

No comments:

Post a Comment