Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, June 8, 2022

Metformin protects against pericyte apoptosis and promotes neurogenesis through suppressing JNK p38 MAPK signalling activation in ischemia/reperfusion injury

WHOM is going to do the research on humans to see if this stops the pericytes strangling capillaries  piece of the neuronal cascade of death?

Metformin protects against pericyte apoptosis and promotes neurogenesis through suppressing JNK p38 MAPK signalling activation in ischemia/reperfusion injury

https://doi.org/10.1016/j.neulet.2022.136708Get rights and content

Highlights

Metformin inhibited pericytes apoptosis contributing to promoting SVZ neurogenesis and neurologic outcome in tMCAO mice.

Metformin supressed JNK p38 MAPK signalling activation in tMCAO mice which inhibited pericytes apoptosis.

Anisomycin abolished neuroprotective effects of Metformin through activating JNK p38 MAPK signalling.

Abstract

Metformin (MET) has been the subject of many classic studies in possessing antiapoptotic, anti-inflammatory, antioxidation activities and antiviral. Recently investigators have examined the anti-apoptosis effects of MET in acute myocardial infarction and Intracerebral hemorrhage, but very little is currently known about how it regulates ischemic stroke-induced pericytes apoptosis and neural stem cells (NSCs) proliferation. The present research explored the potential neuroprotective mechanisms of MET using transient middle cerebral artery occlusion(tMCAO) mice. The experimental work presented that tMCAO mice treated by metformin had better neurologic outcomes on days 1, 3, and 7 after operation, and alleviated blood–brain barrier (BBB) destruction, brain water content and infarct volume on 72 h after surgery. The data showed that MET alleviated BBB disruption by reducing PDGFRβ/ matrix metalloproteinase-9 (MMP9) positive cells, relieving zonula occludens-1 (ZO-1) drop away and increasing pericyte coverage through remarkably reducing the percentage of PDGFRβ/caspase-3 positive cells. In addition, MET induced antiapoptotic activity followed by downregulating cleaved caspase-3 and Bax expression. Moreover, JNK signaling pathway has been proved to be pivotal in mediating apoptosis in cerebral ischemia/reperfusion (I/R) injury. The results of this research illustrated that MET treatment downregulated the levels of phosphorylated JNK and P38 in vivo, however the use of JNK activator anisomycin (ANI) could reverse the neuroprotection effect of MET, demonstrating that the JNK pathway is associated with the anti-apoptosis mechanisms of MET. Finally, metformin remarkably increased the percentage of BrdU/DCX-positive cells in subventricular zone (SVZ) and up-regulated BDNF、VEGF and NGF expression after ischemia/reperfusion(I/R) injury on day 7. Our data illustrated that metformin provides an effective therapy for I/R injury.

 

No comments:

Post a Comment