Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, December 15, 2023

Computational mechanisms underlying the dynamics of physical and cognitive fatigue

How will your doctor use this to cure your post stroke fatigue?

Computational mechanisms underlying the dynamics of physical and cognitive fatigue

, , , , , ,
https://doi.org/10.1016/j.cognition.2023.105603Get rights and content
Under a Creative Commons license
open access

Abstract

The willingness to exert effort for reward is essential but comes at the cost of fatigue. Theories suggest fatigue increases after both physical and cognitive exertion, subsequently reducing the motivation to exert effort. Yet a mechanistic understanding of how this happens on a moment-to-moment basis, and whether mechanisms are common to both mental and physical effort, is lacking. In two studies, participants reported momentary (trial-by-trial) ratings of fatigue during an effort-based decision-making task requiring either physical (grip-force) or cognitive (mental arithmetic) effort. Using a novel computational model, we show that fatigue fluctuates from trial-to-trial as a function of exerted effort and predicts subsequent choices. This mechanism was shared across the domains. Selective to the cognitive domain, committing errors also induced momentary increases in feelings of fatigue. These findings provide insight into the computations underlying the influence of effortful exertion on fatigue and motivation, in both physical and cognitive domains.

No comments:

Post a Comment