So you incompetently don't follow research at all?
If we had a complete database of stroke research this problem would
be solved in no time. Getting thru the blood brain barrier, maybe one of
these?
Overcoming the Blood–Brain Barrier: Successes and Challenges in Developing Nanoparticle-Mediated Drug Delivery Systems for the Treatment of Brain Tumours
May 2020
LIPOSOMES FOR BRAIN DRUG DELIVERY February 2020
Exosomes as drug delivery vehicles for therapeutic proteins to the brain February 2019
Miniaturized system delivers drugs to the brain with pinpoint accuracy February 2018
Nanowires could be potential drug delivery tools for neurodegenerative diseases
November 2017
Nose2Brain – Better Therapy for Multiple Sclerosis April 2017
Novel Alzheimer's treatment uses microscopic droplets of fat to carry drugs into the brain October 2016
New Technology Shows Promise for Delivery of Therapeutics to the Brain
October 2014
Nose-to-Brain Drug Delivery by Nanoparticles in the Treatment of Neurological Disorders July 2014
Brain Targetting through Intranasal Route November 2013
exosomes delivering drugs to brain March 2011
And that is as far as I go back, so there are probably lots more.
The latest here:
CNS Drug Delivery The latest here:in Stroke: Improving Therapeutic Translation From the Bench to the Bedside
Abstract
Drug development for ischemic stroke is challenging as evidenced by the paucity of therapeutics that have advanced beyond a phase III trial. There are many reasons for this lack of clinical translation including factors related to the experimental design of preclinical studies. Often overlooked in therapeutic development for ischemic stroke is the requirement of effective drug delivery to the brain, which is critical for neuroprotective efficacy of several small and large molecule drugs. Advancing central nervous system drug delivery technologies implies a need for detailed comprehension of the blood-brain barrier (BBB) and neurovascular unit. Such knowledge will permit the innate biology of the BBB/neurovascular unit to be leveraged for improved bench-to-bedside translation of novel stroke therapeutics. In this review, we will highlight key aspects of BBB/neurovascular unit pathophysiology and describe state-of-the-art approaches for optimization of central nervous system drug delivery (ie, passive diffusion, mechanical opening of the BBB, liposomes/nanoparticles, transcytosis, intranasal drug administration). Additionally, we will discuss how endogenous BBB transporters represent the next frontier of drug delivery strategies for stroke. Overall, this review will provide cutting edge perspective on how central nervous system drug delivery must be considered for the advancement of new stroke drugs toward human trials.
No comments:
Post a Comment