Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, December 29, 2023

Nimodipine Reduces Microvasospasms After Experimental Subarachnoid Hemorrhage

 

It may benefit them but survivors want 100% recovery and you're not measuring that! No measurements, you'll never improve! I'd have you all fired for incompetence!

“What's measured, improves.” So said management legend and author Peter F. Drucker 

The latest crapola here:

Nimodipine Reduces Microvasospasms After Experimental Subarachnoid Hemorrhage

Originally publishedhttps://doi.org/10.1161/STROKEAHA.123.043976Stroke. 2023;54:2666–2670

BACKGROUND:

The only established pharmacological treatment option improving outcomes for patients suffering from subarachnoid hemorrhage (SAH) is the L-type-calcium channel inhibitor nimodipine. However, the exact mechanisms of action of nimodipine conferring neuroprotection after SAH have yet to be determined. More recently, spasms of the cerebral microcirculation were suggested to play an important role in reduced cerebral perfusion after SAH and, ultimately, outcome. It is unclear whether nimodipine may influence microvasospasms and, thus, microcirculatory dysfunction. The aim of the current study was, therefore, to assess the effect of nimodipine on microvasospasms after experimental SAH.

METHODS:

Male C57Bl/6 N mice (n=3–5/group) were subjected to SAH using the middle cerebral artery perforation model. Six hours after SAH induction, a cranial window was prepared, and the diameter of cortical microvessels was assessed in vivo by 2-photon-microscopy before, during, and after nimodipine application.

RESULTS:

Nimodipine significantly reduced the number of posthemorrhagic microvasospasms. The diameters of nonspastic vessels were not affected.

CONCLUSIONS:

Our results show that nimodipine reduces the formation of microvasospasms, thus, shedding new light on the mode of action of a drug routinely used for the treatment of SAH for >3 decades. Furthermore, L-type Ca2+ channels may be involved in the pathophysiology of microvasospasm formation.


No comments:

Post a Comment