Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, September 18, 2012

cGMP signaling and branching of sensory axons in the spinal cord

Very applicable to us.
http://www.futuremedicine.com/doi/abs/10.2217/fnl.12.58
Axonal branching is essential for neurons to establish contacts to different targets. It therefore provides the physical basis for the integration and distribution of information within the nervous system. During embryonic and early postnatal development, several axonal branching modes may be distinguished that might be regulated by activities of the growth cone or by the axon shaft. The various forms of axonal branching are dependent on intrinsic components and are regulated by extrinsic factors that activate specific signaling systems. This article focuses on components implicated in cyclic guanosine monophosphate signaling that regulate axon bifurcation – a specific form of branching – within the spinal cord in animal models. This cascade is composed of the ligand CNP, the guanylyl cyclase Npr2 and the cyclic guanosine monophosphate-dependent kinase I. In the absence of one of these components, axons of dorsal root ganglion neurons do not form T-shaped branches when entering the spinal cord, while collateral (interstitial) branching, another branching mode of the same type of the neuron, is not affected. It will be important to analyze human patients with mutations in the corresponding genes to get insights into the pathophysiological effects of impaired sensory axon branching in the spinal cord.

No comments:

Post a Comment