Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Tuesday, September 25, 2012

Nonstick trick in the brain Coated particles can slip past brain’s barriers

With this news we should be able to get any drug into the brain.
http://www.medical-blogs.org/blog-crawler?bci=561986&url=http://www.sciencenews.org/view/generic/id/345326/title/Nonstick_trick_in_the_brain
Getting drugs into the brain has proved to be a nanoscale puzzle: Anything bigger than 64 nanometers — about the size of a small virus — gets stuck in the space between brain cells once it gets through the blood-brain barrier. Justin Hanes of Johns Hopkins University School of Medicine and colleagues got around this rule by coating particles destined for brain cells in a dense layer of a polymer called polyethylene glycol. PEG acts like a Teflon coating for the particles, preventing them from sticking to structures within the brain and allowing them to move around more freely. When the researchers injected particles 100 nanometers across coated with either PEG (green) or negatively charged water-hating molecules (red) into the brain of a living mouse, the PEG particles easily penetrated the brain while the negatively charged particles got stuck. Larger nanoparticles would give doctors a more effective way to deliver drugs for brain cancers, strokes and other brain diseases, the team reports in the Aug. 29 Science Translational Medicine.

No comments:

Post a Comment