Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Saturday, June 28, 2014

How our brains store recent memories, cell by single cell

Your doctor should be able to figure out a protocol to solve your short-term memory problems.
http://www.mdlinx.com/internal-medicine/newsl-article.cfm/5344414/ZZF307965849E94474BB34FC062CEC0F93/?

UC San Diego Health System,

Confirming what neurocomputational theorists have long suspected, researchers at the Dignity Health Barrow Neurological Institute in Phoenix, Ariz. and University of California, San Diego School of Medicine report that the human brain locks down episodic memories in the hippocampus, committing each recollection to a distinct, distributed fraction of individual cells. The findings, published in the June 16 Early Edition of PNAS, further illuminate the neural basis of human memory and may, ultimately, shed light on new treatments for diseases and conditions that adversely affect it, such as Alzheimer’s disease and epilepsy. “To really understand how the brain represents memory, we must understand how memory is represented by the fundamental computational units of the brain – single neurons – and their networks,” said Peter N. Steinmetz, MD, PhD, program director of neuroengineering at Barrow and senior author of the study. “Knowing the mechanism of memory storage and retrieval is a critical step in understanding how to better treat the dementing illnesses affecting our growing elderly population.”

No comments:

Post a Comment