Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Monday, June 23, 2014

Researchers Find Gene Critical for Development of Brain Motor Center

Well this is so simple, you follow this research to its natural conclusion. How can we use this to redevelop dead and damaged brains from stroke?
http://www.biosciencetechnology.com/news/2014/06/researchers-find-gene-critical-development-brain-motor-center?
In a report published in Nature Communications, an Ottawa-led team of researchers describe the role of a specific gene, called Snf2h, in the development of the cerebellum. Snf2h is required for the proper development of a healthy cerebellum, a master control centre in the brain for balance, fine motor control and complex physical movements.
Athletes and artists perform their extraordinary feats relying on the cerebellum. As well, the cerebellum is critical for the everyday tasks and activities that we perform, such as walking, eating and driving a car. By removing Snf2h, researchers found that the cerebellum was smaller than normal, and balance and refined movements were compromised.
Led by Dr. David Picketts, a senior scientist at the Ottawa Hospital Research Institute and professor in the Faculty of Medicine at the University of Ottawa, the team describes the Snf2h gene, which is found in our brain's neural stem cells and functions as a master regulator. When they removed this gene early on in a mouse's development, its cerebellum only grew to one-third the normal size. It also had difficulty walking, balancing and coordinating its movements, something called cerebellar ataxia that is a component of many neurodegenerative diseases.
"As these cerebellar stem cells divide, on their journey toward becoming specialized neurons, this master gene is responsible for deciding which genes are turned on and which genes are packed tightly away," said Dr. Picketts. "Without Snf2h there to keep things organized, genes that should be packed away are left turned on, while other genes are not properly activated. This disorganization within the cell’s nucleus results in a neuron that doesn't perform very well—like a car running on five cylinders instead of six."
The cerebellum contains roughly half the neurons found in the brain. It also develops in response to external stimuli. So, as we practice tasks, certain genes or groups of genes are turned on and off, which strengthens these circuits and helps to stabilize or perfect the task being undertaken. The researchers found that the Snf2h gene orchestrates this complex and ongoing process. These master genes, which adapt to external cues to adjust the genes they turn on and off, are known as epigenetic regulators.
"These epigenetic regulators are known to affect memory, behaviour and learning," said Dr. Picketts. "Without Snf2h, not enough cerebellar neurons are produced, and the ones that are produced do not respond and adapt as well to external signals. They also show a progressively disorganized gene expression profile that results in cerebellar ataxia and the premature death of the animal."
There are no studies showing a direct link between Snf2h mutations and diseases with cerebellar ataxia, but Dr. Picketts added that it "is certainly possible and an interesting avenue to explore."
In 2012, Developmental Cell published a paper by Dr. Picketts' team showing that mice lacking the sister gene Snf2l were completely normal, but had larger brains, more cells in all areas of the brain and more actively dividing brain stem cells. The balance between Snf2l and Snf2h gene activity is necessary for controlling brain size and for establishing the proper gene expression profiles that underlie the function of neurons in different regions, including the cerebellum.
This research was funded by the Canadian Institutes of Health Research and the U.S. National Institutes of Health.

No comments:

Post a Comment