Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Friday, March 20, 2015

Ginsenoside Rd promotes neurogenesis in rat brain after transient focal cerebral ischemia via activation of PI3K/Akt pathway

This seems like good  research to follow up with human trials, interventions from day 1 to day 6, so no real need for speed. But since we have no one in charge of any stroke strategy this will fall thru the cracks like most of the research I write about. Complete failure by the existing stroke associations.
http://www.nature.com/aps/journal/vaop/ncurrent/full/aps2014156a.html
Xin-yu Liu, Xin-yu Zhou, Jin-cai Hou, Hua Zhu, Zhong Wang, Jian-xun Liu and Yong-qiu Zheng
Aim:
To investigate the effects of ginsenoside Rd (Rd) on neurogenesis in rat brain after ischemia/reperfusion injury (IRI).
Methods:
Male SD rats were subjected to transient middle cerebral artery occlusion (MCAO) followed by reperfusion. The rats were injected with Rd (1, 2.5, and 5 mg·kg−1·d−1, ip) from d 1 to d 3 after MCAO, and with BrdU (50 mg·kg−1·d−1, ip) from d 3 to d 6, then sacrificed on 7 d. The infarct size and neurological scores were assessed. Neurogenesis in the brains was detected by BrdU, DCX, Nestin, and GFAP immunohistochemistry staining. PC12 cells subjected to OGD/reperfusion were used as an in vitro model of brain ischemia. VEGF and BDNF levels were assessed with ELISA, and Akt and ERK phosphorylation was measured using Western blotting.
Results:
Rd administration dose-dependently decreased the infarct size and neurological scores in the rats with IRI. The high dose of Rd 5 (mg·kg−1·d−1) significantly increased Akt phosphorylation in ipsilateral hemisphere, and markedly increased the number of BrdU/DCX and Nestin/GFAP double-positive cells in ischemic area, which was partially blocked by co-administration of the PI3 kinase inhibitor LY294002. Treatment with Rd (25, 50, and 100 μmol/L) during reperfusion significantly increased the expression of VEGF and BDNF in PC12 cells with IRI. Furthermore, treatment with Rd dose-dependently increased the phosphorylation of Akt and ERK, and significantly decreased PC12 cell apoptosis, which were blocked by co-application of LY294002.
Conclusion:
Rd not only attenuates ischemia/reperfusion injury in rat brain, but also promotes neurogenesis via increasing VEGF and BDNF expression and activating the PI3K/Akt and ERK1/2 pathways.

No comments:

Post a Comment