Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Wednesday, January 10, 2018

3D Printing Creates Super Soft Structures That Replicate Brain And Lungs

Never mind, your doctor and stroke hospital have no inkling what could be done with this to get you 100% recovered. They have no intention of ever collaborating with researchers to solve all the problems in stroke. The status quo is good enough for them as evidenced by the lack of creating any new stroke protocols from research ever.
https://www.rdmag.com/news/2018/01/3d-printing-creates-super-soft-structures-replicate-brain-and-lungs?
A new 3D printing technique allows researchers to replicate biological structures, which could be used for tissue regeneration and replica organs.
Imperial College London researchers have developed a new method for creating 3D structures using cryogenics (freezing) and 3D printing techniques.
This builds on previous research, but is the first to create structures that are soft enough to mimic the mechanical properties of organs such as the brain and lungs. Their technique is published in the journal Scientific Reports.
Being able to match the structure and softness of body tissues means that these structures could be used in medical procedures to form scaffolds that can act as a template for tissue regeneration, where damaged tissues are encouraged to regrow.
Regenerating damaged tissue by 'seeding' porous scaffolds with cells and encouraging them to grow allows the body to heal without the issues that normally affect tissue-replacing transplant procedures, such as rejection by the body.
The use of scaffolds is becoming more common and varied in its applications, but this new technique is special in that it creates super soft scaffolds that are like the softest tissues in the human body and could help to promote this regeneration. In particular, there might be future potential in seeding neuronal cells; those involved in the brain and spinal cord.
The researchers tested the 3D-printed structures by seeding them with dermal fibroblast cells, which generate connective tissue in the skin, and found that there was successful attachment and survival. This success, alongside previous research, could lead to further possibilities around the successful growth of stem cells, which is medically exciting due to their ability to change into different types of cells.
Additionally, the technique could be used to create replica body parts or even whole organs. These could be incredibly useful to scientists, allowing them to carry out experiments not possible on live subjects. They could even be used to help with medical training, replacing the need for animal bodies to practice surgery on.
Zhengchu Tan, one of the researchers from the Department of Mechanical Engineering at Imperial, said: "At the moment we have created structures a few centimetres in size, but ideally we'd like to create a replica of a whole organ using this technique."
The technique uses solid carbon dioxide (dry ice) to rapidly cool a hydrogel ink as it is extruded from a 3D printer. After being thawed, the gel formed is as soft as body tissues, but doesn't collapse under its own weight, which has been a problem for similar techniques in the past.
Dr Antonio Elia Forte, one of the researchers from the Department of Bioengineering at Imperial, said: "Cryogenics is the novel aspect of this technology - it uses the phase change between liquid and solid to trigger polymerisation and create super soft objects that can hold their shape. This means that the technology has a wide variety of possible uses."

No comments:

Post a Comment