Changing stroke rehab and research worldwide now.Time is Brain! trillions and trillions of neurons that DIE each day because there are NO effective hyperacute therapies besides tPA(only 12% effective). I have 523 posts on hyperacute therapy, enough for researchers to spend decades proving them out. These are my personal ideas and blog on stroke rehabilitation and stroke research. Do not attempt any of these without checking with your medical provider. Unless you join me in agitating, when you need these therapies they won't be there.

What this blog is for:

My blog is not to help survivors recover, it is to have the 10 million yearly stroke survivors light fires underneath their doctors, stroke hospitals and stroke researchers to get stroke solved. 100% recovery. The stroke medical world is completely failing at that goal, they don't even have it as a goal. Shortly after getting out of the hospital and getting NO information on the process or protocols of stroke rehabilitation and recovery I started searching on the internet and found that no other survivor received useful information. This is an attempt to cover all stroke rehabilitation information that should be readily available to survivors so they can talk with informed knowledge to their medical staff. It lays out what needs to be done to get stroke survivors closer to 100% recovery. It's quite disgusting that this information is not available from every stroke association and doctors group.

Thursday, April 19, 2018

Neuroplasticity and network connectivity of the motor cortex following stroke: A transcranial direct current stimulation study

Is anyone ever going to put together a protocol on using tDCS and which type?   Otherwise all this fucking research and reviews are totally worthless.  This is why we need strong stroke leadership, to actually help stroke survivors.


Neuroplasticity and network connectivity of the motor cortex following stroke: A transcranial direct current stimulation study


First published: 
14 April 2018
https://doi.org/10.1002/hbm.24079
Funding information National Health and Medical Research Council (NHMRC), Grant/Award N ... More




e



Abstract

Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation technique that has potential for clinical utility in neurorehabilitation. However, recent evidence indicates that the responses to tDCS are highly variable. This study investigated whether electroencephalographic (EEG) measures of functional connectivity of the target network were associated with the response to ipsilesional anodal tDCS in stroke survivors. Ten chronic stroke patients attended two experimental sessions in a randomized cross‐over trial and received anodal or sham tDCS. Single‐pulse transcranial magnetic stimulation was used to quantify change in corticospinal excitability following tDCS. At the beginning of each session, functional connectivity was estimated using the debiased‐weighted phase lag index from EEG recordings at rest. Magnetic resonance imaging identified lesion location and lesion volume. Partial least squares regression identified models of connectivity which maximally accounted for variance in anodal tDCS responses. Stronger connectivity of a network with a seed approximating the stimulated ipsilesional motor cortex, and clusters of electrodes approximating the ipsilesional parietal cortex and contralesional frontotemporal cortex in the alpha band (8–13 Hz) was strongly associated with a greater increase of corticospinal excitability following anodal tDCS. This association was not observed following sham stimulation. Addition of a structural measure(s) of injury (lesion volume) provided an improved model fit for connectivity between the seed electrode and ipsilesional parietal cortex, but not the contralesional frontotemporal cortex. TDCS has potential to greatly assist stroke rehabilitation and functional connectivity appears a robust and specific biomarker of response which may assist clinical translation of this therapy.

No comments:

Post a Comment